5.3.15 Problems 1401 to 1500

Table 5.75: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

6282

\[ {} 2 \left (1-x \right ) y+2 \left (1-2 x \right ) \left (2-x \right ) x y^{\prime }+\left (1-2 x \right ) \left (1-x \right ) x^{2} y^{\prime \prime } = 0 \]

6283

\[ {} -\left (4 k^{2}+\left (4 p^{2}+1\right ) \left (-x^{2}+1\right )\right ) y-8 x \left (-x^{2}+1\right ) y^{\prime }+4 \left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6284

\[ {} -\left (4 k^{2}+\left (-4 p^{2}+1\right ) \left (-x^{2}+1\right )\right ) y-8 x \left (-x^{2}+1\right ) y^{\prime }+4 \left (-x^{2}+1\right )^{2} y^{\prime \prime } = 0 \]

6285

\[ {} -\left (a \left (a +1\right ) \left (1-x \right )+b^{2} x \right ) y+2 \left (1-3 x \right ) \left (1-x \right ) x y^{\prime }+4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

6286

\[ {} y+\left (b x +a \right )^{4} y^{\prime \prime } = 0 \]

6287

\[ {} A y+\left (c \,x^{2}+b x +a \right )^{2} y^{\prime \prime } = 0 \]

6288

\[ {} -y+x y^{\prime }+x^{5} y^{\prime \prime } = 0 \]

6289

\[ {} \left (-2 x^{3}+1\right ) y-x \left (-2 x^{3}+1\right ) y^{\prime }+x^{5} y^{\prime \prime } = 0 \]

6290

\[ {} x^{3} \left (\operatorname {c1} \,x^{4}+\operatorname {b1} \,x^{2}+\operatorname {a1} \right ) y+\left (\operatorname {b0} \,x^{4}+\operatorname {a0} \right ) y^{\prime }+x \left (a^{2}-x^{2}\right ) \left (b^{2}-x^{2}\right ) y^{\prime \prime } = 0 \]

6293

\[ {} y+x^{3} \left (3 x^{2}+a \right ) y^{\prime }+x^{6} y^{\prime \prime } = 0 \]

6294

\[ {} \left (\operatorname {c2} \,x^{2}+\operatorname {b2} x +\operatorname {a2} \right ) y+\left (a -x \right ) \left (-x +b \right ) \left (c -x \right ) \left (\operatorname {c1} \,x^{2}+\operatorname {b1} x +\operatorname {a1} \right ) y^{\prime }+\left (a -x \right )^{2} \left (-x +b \right )^{2} \left (c -x \right )^{2} y^{\prime \prime } = 0 \]

6295

\[ {} \left (-2 x^{2}+1\right ) y+4 x^{3} \left (2 x^{2}+1\right ) y^{\prime }+4 x^{6} y^{\prime \prime } = 0 \]

6296

\[ {} \left (8 x^{4}+10 x^{2}+1\right ) y-4 x^{3} \left (2 x^{2}+1\right ) y^{\prime }+4 x^{6} y^{\prime \prime } = 0 \]

6298

\[ {} \left (1-a \right )^{2} y+a \,x^{2 a -1} y^{\prime }+x^{2 a} y^{\prime \prime } = 0 \]

6299

\[ {} a^{2} x^{a -1} y+\left (-2 a +1\right ) x^{a} y^{\prime }+x^{a +1} y^{\prime \prime } = 0 \]

6300

\[ {} \left (\operatorname {a2} +\operatorname {b2} \,x^{k}\right ) y+x \left (\operatorname {a1} +\operatorname {b1} \,x^{k}\right ) y^{\prime }+x^{2} \left (\operatorname {a0} +\operatorname {b0} \,x^{k}\right ) y^{\prime \prime } = 0 \]

6301

\[ {} \left (\operatorname {a0} +\operatorname {a1} \cos \left (x \right )^{2}\right ) y+a^{2} \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1-a^{2} \cos \left (x \right )^{2}\right ) y^{\prime \prime } = 0 \]

6302

\[ {} -\left (4 k^{2}-\left (-p^{2}+1\right ) \sinh \left (x \right )^{2}\right ) y+4 \cosh \left (x \right ) \sinh \left (x \right ) y^{\prime }+4 \sinh \left (x \right )^{2} y^{\prime \prime } = 0 \]

6306

\[ {} y^{\prime \prime } = x +6 y^{2} \]

6307

\[ {} y^{\prime \prime } = a +b x +c y^{2} \]

6309

\[ {} y^{\prime \prime } = a +b y+2 y^{3} \]

6310

\[ {} y^{\prime \prime } = a +x y+2 y^{3} \]

6311

\[ {} y^{\prime \prime } = f \left (x \right )+g \left (x \right ) y+2 y^{3} \]

6312

\[ {} y^{\prime \prime } = a -2 a b x y+2 y^{3} b^{2} \]

6313

\[ {} y^{\prime \prime } = \operatorname {a0} +\operatorname {a2} y+\operatorname {a1} x y+\operatorname {a3} y^{3} \]

6314

\[ {} y^{\prime \prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \]

6315

\[ {} a \,x^{r} y^{s}+y^{\prime \prime } = 0 \]

6316

\[ {} a \sin \left (y\right )+y^{\prime \prime } = 0 \]

6318

\[ {} y^{\prime \prime } = f \left (y\right ) \]

6319

\[ {} y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+3 f \left (x \right ) y^{\prime }+y^{\prime \prime } = 2 y^{3} \]

6320

\[ {} y y^{\prime }+y^{\prime \prime } = 0 \]

6321

\[ {} y y^{\prime }+y^{\prime \prime } = y^{3} \]

6322

\[ {} a y+y y^{\prime }+y^{\prime \prime } = y^{3} \]

6323

\[ {} y y^{\prime }+y^{\prime \prime } = -12 f \left (x \right ) y+y^{3}+12 f^{\prime }\left (x \right ) \]

6324

\[ {} 2 a^{2} y+a y^{2}+\left (3 a +y\right ) y^{\prime }+y^{\prime \prime } = y^{3} \]

6325

\[ {} y^{\prime \prime } = f \left (x \right ) y^{2}+y^{3}+y \left (-2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+\left (3 f \left (x \right )-y\right ) y^{\prime } \]

6326

\[ {} y^{\prime \prime } = \operatorname {f2} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f1} \left (x \right ) y^{2}+y^{3}+\left (3 \operatorname {f1} \left (x \right )-y\right ) y^{\prime } \]

6327

\[ {} y^{\prime \prime } = \operatorname {g3} \left (x \right )+\operatorname {g2} \left (x \right ) y+\operatorname {g1} \left (x \right ) y^{2}+\operatorname {g0} \left (x \right ) y^{3}+\left (\operatorname {f1} \left (x \right )+\operatorname {f0} \left (x \right ) y\right ) y^{\prime } \]

6328

\[ {} y^{\prime \prime } = f^{\prime }\left (x \right ) y+\left (f \left (x \right )-2 y\right ) y^{\prime } \]

6329

\[ {} y^{\prime \prime } = g \left (x \right )+f \left (x \right ) y^{2}+\left (f \left (x \right )-2 y\right ) y^{\prime } \]

6330

\[ {} y^{\prime \prime } = \operatorname {f3} \left (x \right )+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \]

6331

\[ {} y^{\prime \prime } = \operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \]

6332

\[ {} y^{\prime \prime } = a +4 y b^{2}+3 b y^{2}+3 y y^{\prime } \]

6333

\[ {} 3 y y^{\prime }+y^{\prime \prime } = f \left (x \right )+g \left (x \right ) y-y^{3} \]

6334

\[ {} y^{\prime \prime } = f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime } \]

6335

\[ {} y^{\prime \prime } = a \left (1+2 y y^{\prime }\right ) \]

6336

\[ {} b y+a \left (y^{2}-1\right ) y^{\prime }+y^{\prime \prime } = 0 \]

6337

\[ {} g \left (x , y\right )+f \left (x , y\right ) y^{\prime }+y^{\prime \prime } = 0 \]

6339

\[ {} 2 \cot \left (x \right ) y^{\prime }+2 \tan \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6342

\[ {} b y+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6343

\[ {} b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6344

\[ {} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6347

\[ {} b y+a y {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6348

\[ {} g \left (y\right )+f \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6349

\[ {} f \left (x \right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6350

\[ {} f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6351

\[ {} h \left (y\right )+f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6354

\[ {} \left ({\mathrm e}^{2 y}+x \right ) {y^{\prime }}^{3}+y^{\prime \prime } = 0 \]

6358

\[ {} \left (a x +b y\right ) {y^{\prime }}^{3}+y^{\prime \prime } = 0 \]

6359

\[ {} a y \left (1+{y^{\prime }}^{2}\right )^{2}+y^{\prime \prime } = 0 \]

6360

\[ {} y^{\prime \prime } = a \left (x y^{\prime }-y\right )^{k} \]

6361

\[ {} g \left (x \right ) y^{\prime }+f \left (x \right ) {y^{\prime }}^{k}+y^{\prime \prime } = 0 \]

6362

\[ {} y^{\prime \prime } = A \,x^{a} y^{b} {y^{\prime }}^{c} \]

6364

\[ {} y^{\prime \prime } = a \sqrt {b y^{2}+{y^{\prime }}^{2}} \]

6365

\[ {} y^{\prime \prime } = a \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

6366

\[ {} y^{\prime \prime } = a x \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

6367

\[ {} y^{\prime \prime } = a y \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

6368

\[ {} y^{\prime \prime } = a y {\left (1+\left (b -y^{\prime }\right )^{2}\right )}^{{3}/{2}} \]

6369

\[ {} y^{\prime \prime } = a \left (b +c x +y\right ) \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

6370

\[ {} y^{3} y^{\prime }+y^{\prime \prime } = y y^{\prime } \sqrt {y^{4}+4 y^{\prime }} \]

6371

\[ {} y^{\prime \prime } = f \left (y^{\prime }\right ) \]

6372

\[ {} y^{\prime \prime } = f \left (a x +b y, y^{\prime }\right ) \]

6373

\[ {} y^{\prime \prime } = f \left (x , \frac {y^{\prime }}{y}\right ) y \]

6374

\[ {} y^{\prime \prime } = x^{n -2} f \left (y x^{-n}, x^{-n +1} y^{\prime }\right ) \]

6375

\[ {} 2 y^{\prime \prime } = 1+12 y^{2} \]

6376

\[ {} 2 y^{\prime \prime } = y \left (a -y^{2}\right ) \]

6378

\[ {} a \,{\mathrm e}^{y} x +y^{\prime }+x y^{\prime \prime } = 0 \]

6379

\[ {} x y^{5}+2 y^{\prime }+x y^{\prime \prime } = 0 \]

6380

\[ {} x y^{n}+2 y^{\prime }+x y^{\prime \prime } = 0 \]

6381

\[ {} x^{m} y^{n}+2 y^{\prime }+x y^{\prime \prime } = 0 \]

6382

\[ {} a \,x^{m} y^{n}+2 y^{\prime }+x y^{\prime \prime } = 0 \]

6383

\[ {} b \,{\mathrm e}^{y} x +a y^{\prime }+x y^{\prime \prime } = 0 \]

6385

\[ {} x y^{\prime \prime } = \left (1-y\right ) y^{\prime } \]

6389

\[ {} x y^{\prime \prime } = -y^{2}-2 y^{\prime }+x^{2} {y^{\prime }}^{2} \]

6390

\[ {} 2 y^{\prime }+a \,x^{2} {y^{\prime }}^{2}+x y^{\prime \prime } = b \]

6391

\[ {} \left (-y+a x y^{\prime }\right )^{2}+x y^{\prime \prime } = b \]

6393

\[ {} 2 y^{\prime }+x y^{\prime \prime } = a \,x^{2 k} {y^{\prime }}^{k} \]

6395

\[ {} a y \left (1-y^{n}\right )+x^{2} y^{\prime \prime } = 0 \]

6396

\[ {} a \,{\mathrm e}^{y-1}+x^{2} y^{\prime \prime } = 0 \]

6397

\[ {} \left (a +1\right ) x y^{\prime }+x^{2} y^{\prime \prime } = x^{k} f \left (x^{k} y, k y+x y^{\prime }\right ) \]

6401

\[ {} x^{2} y^{\prime \prime } = 6 y-4 x^{2} y^{2}+x^{4} {y^{\prime }}^{2} \]

6402

\[ {} a \left (x y^{\prime }-y\right )^{2}+x^{2} y^{\prime \prime } = b \,x^{2} \]

6403

\[ {} 2 x y+a \,x^{4} {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = b \]

6404

\[ {} b x +a y {y^{\prime }}^{2}+x^{2} y^{\prime \prime } = 0 \]

6405

\[ {} x^{2} y^{\prime \prime } = \sqrt {b y^{2}+a \,x^{2} {y^{\prime }}^{2}} \]

6406

\[ {} x^{2} y^{\prime \prime } = f \left (\frac {x y^{\prime }}{y}\right ) y \]

6408

\[ {} 2 y+a y^{3}+9 x^{2} y^{\prime \prime } = 0 \]

6410

\[ {} 24+12 x y+x^{3} \left (-y^{3}+y y^{\prime }+y^{\prime \prime }\right ) = 0 \]

6411

\[ {} x^{3} y^{\prime \prime } = a \left (x y^{\prime }-y\right )^{2} \]

6412

\[ {} -6+x y \left (12+3 x y-2 x^{2} y^{2}\right )+x^{2} \left (9+2 x y\right ) y^{\prime }+2 x^{3} y^{\prime \prime } = 0 \]