5.3.74 Problems 7301 to 7400

Table 5.193: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

24914

\[ {} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

24915

\[ {} 4 y^{3} {y^{\prime }}^{2}+4 x y^{\prime }+y = 0 \]

24916

\[ {} {y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

24917

\[ {} y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

24919

\[ {} {y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y = 0 \]

24920

\[ {} 2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]

24927

\[ {} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

24928

\[ {} y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]

24929

\[ {} x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0 \]

24930

\[ {} y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \]

24931

\[ {} {y^{\prime }}^{4} x -2 {y^{\prime }}^{3} y+12 x^{3} = 0 \]

24932

\[ {} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

24933

\[ {} y = x y^{\prime }+{y^{\prime }}^{n} \]

24934

\[ {} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

24935

\[ {} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

24936

\[ {} 2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \]

24937

\[ {} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

24938

\[ {} 4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

24939

\[ {} {y^{\prime }}^{3}-x y^{\prime }+2 y = 0 \]

24940

\[ {} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

24941

\[ {} 2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

24942

\[ {} 5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

24943

\[ {} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

24944

\[ {} y = x y^{\prime }+x^{3} {y^{\prime }}^{2} \]

24945

\[ {} 8 y = {y^{\prime }}^{2}+3 x^{2} \]

24948

\[ {} {y^{\prime }}^{2}+x y^{2} y^{\prime }+y^{3} = 0 \]

24949

\[ {} 4 x {y^{\prime }}^{2}+4 y y^{\prime }-y^{4} = 0 \]

24951

\[ {} 9 {y^{\prime }}^{2}+12 y^{4} y^{\prime } x +4 y^{5} = 0 \]

24952

\[ {} 2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-1 = 0 \]

24954

\[ {} 9 y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y = 0 \]

24955

\[ {} y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

24956

\[ {} x {y^{\prime }}^{2}-y y^{\prime }-y = 0 \]

24957

\[ {} y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0 \]

24960

\[ {} y^{3} {y^{\prime }}^{3}-x y^{\prime }+y = 0 \]

24961

\[ {} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0 \]

24963

\[ {} 9 {y^{\prime }}^{2}+3 y^{4} y^{\prime } x +y^{5} = 0 \]

24964

\[ {} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

24966

\[ {} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

24968

\[ {} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

24969

\[ {} 4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

24970

\[ {} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

24971

\[ {} x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

24972

\[ {} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

24973

\[ {} 16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]

24975

\[ {} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

24976

\[ {} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0 \]

24977

\[ {} x^{2} {y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+1+y^{2} = 0 \]

24979

\[ {} x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

24980

\[ {} \left (1+y^{\prime }\right )^{2} \left (y-x y^{\prime }\right ) = 1 \]

24981

\[ {} {y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

24984

\[ {} {y^{\prime }}^{2}+y y^{\prime }-x -1 = 0 \]

24988

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

24989

\[ {} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

24990

\[ {} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

24994

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

24995

\[ {} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

24997

\[ {} {y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

25001

\[ {} y^{\prime \prime }+{\mathrm e}^{-2 y} = 0 \]

25002

\[ {} y^{\prime \prime }+{\mathrm e}^{-2 y} = 0 \]

25003

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

25004

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

25008

\[ {} 2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

25011

\[ {} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

25012

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right ) \]

25013

\[ {} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

25014

\[ {} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

25020

\[ {} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0 \]

25022

\[ {} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

25023

\[ {} 3 y y^{\prime } y^{\prime \prime } = -1+{y^{\prime }}^{3} \]

25024

\[ {} 4 y {y^{\prime }}^{2} y^{\prime \prime } = 3+{y^{\prime }}^{4} \]

25071

\[ {} \left (t^{2}+3 y^{2}\right ) y^{\prime } = -2 t y \]

25072

\[ {} y^{\prime } = t^{2}+y^{2} \]

25088

\[ {} -y+y^{\prime } = y^{2} \]

25089

\[ {} y^{\prime } = 4 t y^{2} \]

25093

\[ {} \frac {\left (u^{2}+1\right ) y^{\prime }}{y} = u \]

25121

\[ {} y^{\prime } = \frac {4 t -3 y}{-y+t} \]

25123

\[ {} y^{\prime } = \frac {y^{2}+2 t y}{t^{2}+t y} \]

25126

\[ {} t y^{\prime } = y+\sqrt {t^{2}-y^{2}} \]

25129

\[ {} y+y^{\prime } = y^{2} \]

25142

\[ {} y^{\prime } = \tan \left (y\right )+\frac {2 \cos \left (t \right )}{\cos \left (y\right )} \]

25145

\[ {} y+2 t +2 t y y^{\prime } = 0 \]

25147

\[ {} 2 t^{2}-y+\left (t +y^{2}\right ) y^{\prime } = 0 \]

25149

\[ {} 3 y-5 t +2 y y^{\prime }-t y^{\prime } = 0 \]

25150

\[ {} 2 t y+\left (t^{2}+3 y^{2}\right ) y^{\prime } = 0 \]

25154

\[ {} a t +b y-\left (c t +d y\right ) y^{\prime } = 0 \]

25161

\[ {} y^{\prime } = t +y^{2} \]

25162

\[ {} y^{\prime } = y^{3}-y \]

25163

\[ {} y^{\prime } = 1+\left (-y+t \right )^{2} \]

25166

\[ {} y^{\prime } = \sqrt {y} \]

25203

\[ {} y^{\prime \prime }-y y^{\prime } = 6 \]

25206

\[ {} y^{\prime \prime }+\sin \left (y\right ) = 0 \]

25261

\[ {} y^{\prime \prime \prime \prime }+y^{4} = 0 \]

25262

\[ {} y^{\left (5\right )}+t y^{\prime \prime }-3 y = 0 \]

25295

\[ {} [y_{1}^{\prime \prime }\left (t \right )+2 y_{1} \left (t \right ) = -3 y_{2} \left (t \right ), y_{2}^{\prime \prime }\left (t \right )+2 y_{2}^{\prime }\left (t \right )-9 y_{2} \left (t \right ) = 6 y_{1} \left (t \right )] \]

25296

\[ {} y^{\prime \prime }+y y^{\prime } = 0 \]

25299

\[ {} y^{\prime \prime }+t y^{\prime }+\left (t^{2}+1\right )^{2} y^{2} = 0 \]

25300

\[ {} 3 t^{2} y^{\prime \prime }+2 t y^{\prime }+y = {\mathrm e}^{2 t} \]

25301

\[ {} y^{\prime \prime }+\sqrt {y^{\prime }}+y = t \]

25302

\[ {} y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y = \sqrt {t} \]

25304

\[ {} y^{\prime \prime }+2 y+t \sin \left (y\right ) = 0 \]