| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{3} {y^{\prime }}^{2}+4 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x^{6} {y^{\prime }}^{3}-x y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4} x -2 {y^{\prime }}^{3} y+12 x^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+{y^{\prime }}^{n}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y = x y^{\prime }+x^{3} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 8 y = {y^{\prime }}^{2}+3 x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+x y^{2} y^{\prime }+y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x {y^{\prime }}^{2}+4 y y^{\prime }-y^{4} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 9 {y^{\prime }}^{2}+12 y^{4} y^{\prime } x +4 y^{5} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 9 y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2}-y y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{3} {y^{\prime }}^{3}-x y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 9 {y^{\prime }}^{2}+3 y^{4} y^{\prime } x +y^{5} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} {y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+1+y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y^{\prime }\right )^{2} \left (y-x y^{\prime }\right ) = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}+y y^{\prime }-x -1 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 {y^{\prime }}^{3} y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -{y^{\prime }}^{2}+{y^{\prime }}^{3}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{3}+y y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+{\mathrm e}^{-2 y} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+{\mathrm e}^{-2 y} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = \sin \left (2 y\right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = \sin \left (2 y\right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-\cos \left (y\right ) y y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}+y y^{\prime \prime }\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 3 y y^{\prime } y^{\prime \prime } = -1+{y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 4 y {y^{\prime }}^{2} y^{\prime \prime } = 3+{y^{\prime }}^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t^{2}+3 y^{2}\right ) y^{\prime } = -2 t y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = t^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 4 t y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {\left (u^{2}+1\right ) y^{\prime }}{y} = u
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {4 t -3 y}{-y+t}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y^{2}+2 t y}{t^{2}+t y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime } = y+\sqrt {t^{2}-y^{2}}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y+y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \tan \left (y\right )+\frac {2 \cos \left (t \right )}{\cos \left (y\right )}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+2 t +2 t y y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 t^{2}-y+\left (t +y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 y-5 t +2 y y^{\prime }-t y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 t y+\left (t^{2}+3 y^{2}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} a t +b y-\left (c t +d y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = t +y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{3}-y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 1+\left (-y+t \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y y^{\prime } = 6
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\sin \left (y\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{4} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\left (5\right )}+t y^{\prime \prime }-3 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} [y_{1}^{\prime \prime }\left (t \right )+2 y_{1} \left (t \right ) = -3 y_{2} \left (t \right ), y_{2}^{\prime \prime }\left (t \right )+2 y_{2}^{\prime }\left (t \right )-9 y_{2} \left (t \right ) = 6 y_{1} \left (t \right )]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+t y^{\prime }+\left (t^{2}+1\right )^{2} y^{2} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 t^{2} y^{\prime \prime }+2 t y^{\prime }+y = {\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\sqrt {y^{\prime }}+y = t
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y = \sqrt {t}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y+t \sin \left (y\right ) = 0
\]
|
✗ |
✗ |
✗ |
|