2.2.90 Problems 8901 to 9000

Table 2.181: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8901

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \sin \left (x \right )+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.087

8902

\[ {}x^{2} y^{\prime \prime }+\left (\cos \left (x \right )-1\right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.215

8903

\[ {}\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.921

8904

\[ {}\left (x -2\right ) y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.036

8905

\[ {}\left (x +1\right ) \left (3 x -1\right ) y^{\prime \prime }+\cos \left (x \right ) y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.507

8906

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]
i.c.

[_Lienard]

0.806

8907

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -x y = x^{2}+2 x \]

[[_2nd_order, _with_linear_symmetries]]

1.145

8908

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.024

8909

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.796

8910

\[ {}y^{\prime \prime }+\left (x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.629

8911

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.023

8912

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.166

8913

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.128

8914

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{3}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.306

8915

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.081

8916

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{3} \cos \left (x \right )+\sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.354

8917

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.901

8918

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.118

8919

\[ {}x^{2} \left (x +3\right ) y^{\prime \prime }+5 x \left (x +1\right ) y^{\prime }-\left (1-4 x \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.092

8920

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.031

8921

\[ {}{y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \]

[‘y=_G(x,y’)‘]

37.094

8922

\[ {}\left (y-2 y^{\prime } x \right )^{2} = {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

248.724

8923

\[ {}x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.703

8924

\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.813

8925

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.885

8926

\[ {}x y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_Emden, _Fowler]]

0.807

8927

\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.835

8928

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.311

8929

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.035

8930

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.959

8931

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x +\left (x -5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.158

8932

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.075

8933

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.004

8934

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = \cos \left (x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.016

8935

\[ {}2 x^{2} y^{\prime \prime }+2 y^{\prime } x -x y = x^{3}+x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.082

8936

\[ {}\cos \left (x \right ) y^{\prime \prime }+2 y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.000

8937

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.892

8938

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -x y = 0 \]

[[_Emden, _Fowler]]

0.788

8939

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.868

8940

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.302

8941

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+6 x \right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.892

8942

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +\left (x^{2}-8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.368

8943

\[ {}x^{2} y^{\prime \prime }-9 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

0.778

8944

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.951

8945

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.944

8946

\[ {}x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.913

8947

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.776

8948

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

0.663

8949

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y = 0 \]

[[_Emden, _Fowler]]

0.770

8950

\[ {}x^{2} y^{\prime \prime }-x y = 0 \]

[[_Emden, _Fowler]]

1.175

8951

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.802

8952

\[ {}y^{\prime } = y \left (1-y^{2}\right ) \]

[_quadrature]

3.984

8953

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.525

8954

\[ {}\frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.969

8955

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.745

8956

\[ {}\frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.344

8957

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

1.307

8958

\[ {}y^{\prime \prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.569

8959

\[ {}\left [\begin {array}{c} x^{\prime }=x+2 y+2 t +1 \\ y^{\prime }=5 x+y+3 t -1 \end {array}\right ] \]

system_of_ODEs

0.886

8960

\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

106.230

8961

\[ {}y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6.707

8962

\[ {}y^{\prime \prime } = A y^{{2}/{3}} \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

157.401

8963

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.840

8964

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.342

8965

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.887

8966

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.121

8967

\[ {}x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.053

8968

\[ {}y^{\prime }+y = \frac {1}{x} \]

[[_linear, ‘class A‘]]

0.245

8969

\[ {}y^{\prime }+y = \frac {1}{x^{2}} \]

[[_linear, ‘class A‘]]

0.251

8970

\[ {}y^{\prime } x +y = 0 \]

[_separable]

0.563

8971

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

0.149

8972

\[ {}y^{\prime \prime } = \frac {1}{x} \]

[[_2nd_order, _quadrature]]

0.066

8973

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{x} \]

[[_2nd_order, _missing_y]]

0.073

8974

\[ {}y^{\prime \prime }+y = \frac {1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.076

8975

\[ {}y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.075

8976

\[ {}h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \]

[_quadrature]

24.878

8977

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.195

8978

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.390

8979

\[ {}y^{\prime \prime }+y = {\mathrm e}^{a \cos \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.151

8980

\[ {}y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x} \]

[[_1st_order, _with_linear_symmetries]]

1.579

8981

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.002

8982

\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

[_separable]

1.471

8983

\[ {}y^{\prime \prime }+{\mathrm e}^{y} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

15.980

8984

\[ {}y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1.390

8985

\[ {}y^{\prime } = 0 \]

[_quadrature]

0.677

8986

\[ {}y^{\prime } = a \]

[_quadrature]

0.354

8987

\[ {}y^{\prime } = x \]

[_quadrature]

0.448

8988

\[ {}y^{\prime } = 1 \]

[_quadrature]

0.750

8989

\[ {}y^{\prime } = a x \]

[_quadrature]

0.181

8990

\[ {}y^{\prime } = y a x \]

[_separable]

0.868

8991

\[ {}y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

0.744

8992

\[ {}y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

0.853

8993

\[ {}y^{\prime } = y \]

[_quadrature]

1.367

8994

\[ {}y^{\prime } = b y \]

[_quadrature]

0.744

8995

\[ {}y^{\prime } = a x +b y^{2} \]

[[_Riccati, _special]]

1.096

8996

\[ {}c y^{\prime } = 0 \]

[_quadrature]

0.684

8997

\[ {}c y^{\prime } = a \]

[_quadrature]

0.361

8998

\[ {}c y^{\prime } = a x \]

[_quadrature]

0.223

8999

\[ {}c y^{\prime } = a x +y \]

[[_linear, ‘class A‘]]

0.766

9000

\[ {}c y^{\prime } = a x +b y \]

[[_linear, ‘class A‘]]

0.881