2.2.83 Problems 8201 to 8300

Table 2.179: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

8201

\begin{align*} y^{\prime }&=f \left (x \right ) \\ \end{align*}

[_quadrature]

0.182

8202

\begin{align*} y^{\prime \prime }&=f \left (x \right ) \\ \end{align*}

[[_2nd_order, _quadrature]]

0.871

8203

\begin{align*} x {y^{\prime }}^{2}-4 y^{\prime }-12 x^{3}&=0 \\ \end{align*}

[_quadrature]

1.407

8204

\begin{align*} y^{\prime }&=5-y \\ \end{align*}

[_quadrature]

0.402

8205

\begin{align*} y^{\prime }&=4+y^{2} \\ \end{align*}

[_quadrature]

3.819

8206

\begin{align*} y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }+158 y^{\prime \prime }-580 y^{\prime }+841 y&=0 \\ \end{align*}

[[_high_order, _missing_x]]

0.069

8207

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+20 y^{\prime } x -78 y&=0 \\ \end{align*}

[[_3rd_order, _with_linear_symmetries]]

0.120

8208

\begin{align*} y^{\prime }&=y-y^{2} \\ y \left (0\right ) &= -{\frac {1}{3}} \\ \end{align*}

[_quadrature]

0.868

8209

\begin{align*} y^{\prime }&=y-y^{2} \\ y \left (-1\right ) &= 2 \\ \end{align*}

[_quadrature]

0.817

8210

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ y \left (2\right ) &= {\frac {1}{3}} \\ \end{align*}

[_separable]

3.598

8211

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ y \left (-2\right ) &= {\frac {1}{2}} \\ \end{align*}

[_separable]

3.612

8212

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

5.782

8213

\begin{align*} y^{\prime }+2 x y^{2}&=0 \\ y \left (\frac {1}{2}\right ) &= -4 \\ \end{align*}

[_separable]

3.838

8214

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (0\right ) &= -1 \\ x^{\prime }\left (0\right ) &= 8 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.924

8215

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (\frac {\pi }{2}\right ) &= 0 \\ x^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x]]

0.799

8216

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (\frac {\pi }{6}\right ) &= {\frac {1}{2}} \\ x^{\prime }\left (\frac {\pi }{6}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.150

8217

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (\frac {\pi }{4}\right ) &= \sqrt {2} \\ x^{\prime }\left (\frac {\pi }{4}\right ) &= 2 \sqrt {2} \\ \end{align*}

[[_2nd_order, _missing_x]]

1.316

8218

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.235

8219

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= {\mathrm e} \\ \end{align*}

[[_2nd_order, _missing_x]]

1.406

8220

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (-1\right ) &= 5 \\ y^{\prime }\left (-1\right ) &= -5 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.398

8221

\begin{align*} y^{\prime \prime }-y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.836

8222

\begin{align*} y^{\prime }&=3 y^{{2}/{3}} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

3.156

8223

\begin{align*} y^{\prime } x&=2 y \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

4.484

8224

\begin{align*} y^{\prime }&=y^{{2}/{3}} \\ \end{align*}

[_quadrature]

1.590

8225

\begin{align*} y^{\prime }&=\sqrt {y x} \\ \end{align*}

[[_homogeneous, ‘class G‘]]

13.767

8226

\begin{align*} y^{\prime } x&=y \\ \end{align*}

[_separable]

1.648

8227

\begin{align*} y^{\prime }-y&=x \\ \end{align*}

[[_linear, ‘class A‘]]

0.767

8228

\begin{align*} \left (4-y^{2}\right ) y^{\prime }&=x^{2} \\ \end{align*}

[_separable]

1.480

8229

\begin{align*} \left (y^{3}+1\right ) y^{\prime }&=x^{2} \\ \end{align*}

[_separable]

1.487

8230

\begin{align*} \left (x^{2}+y^{2}\right ) y^{\prime }&=y^{2} \\ \end{align*}

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

8.216

8231

\begin{align*} \left (-x +y\right ) y^{\prime }&=x +y \\ \end{align*}

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.210

8232

\begin{align*} y^{\prime }&=\sqrt {y^{2}-9} \\ y \left (1\right ) &= 4 \\ \end{align*}

[_quadrature]

15.621

8233

\begin{align*} y^{\prime }&=\sqrt {y^{2}-9} \\ y \left (5\right ) &= 3 \\ \end{align*}

[_quadrature]

2.823

8234

\begin{align*} y^{\prime }&=\sqrt {y^{2}-9} \\ y \left (2\right ) &= -3 \\ \end{align*}

[_quadrature]

2.596

8235

\begin{align*} y^{\prime }&=\sqrt {y^{2}-9} \\ y \left (-1\right ) &= 1 \\ \end{align*}

[_quadrature]

5.988

8236

\begin{align*} y^{\prime } x&=y \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

3.049

8237

\begin{align*} y^{\prime }&=1+y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

6.612

8238

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[_quadrature]

2.270

8239

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= -1 \\ \end{align*}

[_quadrature]

3.204

8240

\begin{align*} y^{\prime }&=y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_quadrature]

1.996

8241

\begin{align*} y^{\prime }&=y^{2} \\ y \left (1\right ) &= 1 \\ \end{align*}

[_quadrature]

1.119

8242

\begin{align*} y^{\prime }&=y^{2} \\ y \left (3\right ) &= -1 \\ \end{align*}

[_quadrature]

1.019

8243

\begin{align*} y y^{\prime }&=3 x \\ y \left (-2\right ) &= 3 \\ \end{align*}

[_separable]

5.385

8244

\begin{align*} y y^{\prime }&=3 x \\ y \left (2\right ) &= -4 \\ \end{align*}

[_separable]

5.159

8245

\begin{align*} y y^{\prime }&=3 x \\ y \left (0\right ) &= 0 \\ \end{align*}

[_separable]

8.008

8246

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 3 \\ \end{align*}

[[_2nd_order, _missing_x]]

3.360

8247

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.156

8248

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y^{\prime }\left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{6}\right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.165

8249

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 5 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.912

8250

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\pi \right ) &= 2 \\ \end{align*}

[[_2nd_order, _missing_x]]

1.169

8251

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y^{\prime }\left (\frac {\pi }{2}\right ) &= 1 \\ y^{\prime }\left (\pi \right ) &= 0 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.381

8252

\begin{align*} y^{\prime }&=x -2 y \\ y \left (0\right ) &= {\frac {1}{2}} \\ \end{align*}

[[_linear, ‘class A‘]]

1.004

8253

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (0\right ) &= 1 \\ \end{align*}

[[_Riccati, _special]]

12.109

8254

\begin{align*} 2 y^{\prime \prime }-3 y^{2}&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

7.339

8255

\begin{align*} 2 y+y^{\prime }&=3 x -6 \\ \end{align*}

[[_linear, ‘class A‘]]

0.946

8256

\begin{align*} y^{\prime }&=x \sqrt {y} \\ y \left (2\right ) &= 1 \\ \end{align*}

[_separable]

16.098

8257

\begin{align*} y^{\prime } x&=2 x \\ \end{align*}

[_quadrature]

0.541

8258

\begin{align*} y^{\prime }&=2 \\ \end{align*}

[_quadrature]

0.447

8259

\begin{align*} y^{\prime }&=2 y-4 \\ \end{align*}

[_quadrature]

0.478

8260

\begin{align*} y^{\prime } x&=y \\ \end{align*}

[_separable]

1.789

8261

\begin{align*} y^{\prime \prime }+9 y&=18 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.362

8262

\begin{align*} -y^{\prime }+y^{\prime \prime } x&=0 \\ \end{align*}

[[_2nd_order, _missing_y]]

13.217

8263

\begin{align*} y^{\prime \prime }&=y^{\prime } \\ \end{align*}

[[_2nd_order, _missing_x]]

1.272

8264

\begin{align*} y^{\prime }&=y \left (-3+y\right ) \\ \end{align*}

[_quadrature]

0.773

8265

\begin{align*} 3 y^{\prime } x -2 y&=0 \\ \end{align*}

[_separable]

2.416

8266

\begin{align*} \left (-2+2 y\right ) y^{\prime }&=2 x -1 \\ y \left (0\right ) &= 1 \\ \end{align*}

[_separable]

6.069

8267

\begin{align*} y^{\prime } x +y&=2 x \\ y \left (x_{0} \right ) &= 1 \\ \end{align*}

[_linear]

3.727

8268

\begin{align*} y^{\prime }&=x^{2}+y^{2} \\ y \left (1\right ) &= -1 \\ \end{align*}

[[_Riccati, _special]]

12.119

8269

\begin{align*} {y^{\prime }}^{2}&=4 x^{2} \\ \end{align*}

[_quadrature]

0.183

8270

\begin{align*} y^{\prime }&=6 \sqrt {y}+5 x^{3} \\ y \left (-1\right ) &= 4 \\ \end{align*}

[_Chini]

1.917

8271

\begin{align*} y^{\prime \prime }+y&=2 \cos \left (x \right )-2 \sin \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

25.725

8272

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

0.721

8273

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=0 \\ \end{align*}

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.819

8274

\begin{align*} x^{2} y^{\prime \prime }+y^{\prime } x +y&=\sec \left (\ln \left (x \right )\right ) \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

5.322

8275

\begin{align*} y^{\prime }+\sin \left (x \right ) y&=x \\ \end{align*}

[_linear]

1.747

8276

\begin{align*} y^{\prime }-2 y x&={\mathrm e}^{x} \\ \end{align*}

[_linear]

1.520

8277

\begin{align*} x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y&=0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

14.593

8278

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x^{2}} \\ \end{align*}

[[_2nd_order, _linear, _nonhomogeneous]]

2.099

8279

\begin{align*} y^{\prime } x +y&=\frac {1}{y^{2}} \\ \end{align*}

[_separable]

4.012

8280

\begin{align*} 1+{y^{\prime }}^{2}&=\frac {1}{y^{2}} \\ \end{align*}

[_quadrature]

0.858

8281

\begin{align*} y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\ \end{align*}

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.485

8282

\begin{align*} \left (-y x +1\right ) y^{\prime }&=y^{2} \\ \end{align*}

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

4.605

8283

\begin{align*} y^{\prime \prime }+9 y&=5 \\ \end{align*}

[[_2nd_order, _missing_x]]

2.255

8284

\begin{align*} 2 y+y^{\prime }&=3 x \\ \end{align*}

[[_linear, ‘class A‘]]

0.898

8285

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

2.026

8286

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= -3 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

1.187

8287

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\ y \left (1\right ) &= 4 \\ y^{\prime }\left (1\right ) &= -2 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

44.457

8288

\begin{align*} y^{\prime \prime }-2 y^{\prime }-3 y&=6 x +4 \\ y \left (-1\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}

[[_2nd_order, _with_linear_symmetries]]

22.511

8289

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (-2\right ) &= 1 \\ \end{align*}

[_Riccati]

8.750

8290

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (3\right ) &= 0 \\ \end{align*}

[_Riccati]

7.774

8291

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (0\right ) &= 2 \\ \end{align*}

[_Riccati]

7.405

8292

\begin{align*} y^{\prime }&=x^{2}-y^{2} \\ y \left (0\right ) &= 0 \\ \end{align*}

[_Riccati]

5.286

8293

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (-6\right ) &= 0 \\ \end{align*}

[‘y=_G(x,y’)‘]

1.030

8294

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= 1 \\ \end{align*}

[‘y=_G(x,y’)‘]

0.562

8295

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (0\right ) &= -4 \\ \end{align*}

[‘y=_G(x,y’)‘]

0.569

8296

\begin{align*} y^{\prime }&={\mathrm e}^{-\frac {x y^{2}}{100}} \\ y \left (8\right ) &= -4 \\ \end{align*}

[‘y=_G(x,y’)‘]

0.583

8297

\begin{align*} y^{\prime }&=-y x +1 \\ y \left (0\right ) &= 0 \\ \end{align*}

[_linear]

1.349

8298

\begin{align*} y^{\prime }&=-y x +1 \\ y \left (-1\right ) &= 0 \\ \end{align*}

[_linear]

1.366

8299

\begin{align*} y^{\prime }&=-y x +1 \\ y \left (2\right ) &= 2 \\ \end{align*}

[_linear]

1.353

8300

\begin{align*} y^{\prime }&=-y x +1 \\ y \left (0\right ) &= -4 \\ \end{align*}

[_linear]

1.253