# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
2.522 |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
3.301 |
|
\[
{}y^{\prime \prime }-y y^{\prime } = 2 x
\] |
[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]] |
✗ |
5.986 |
|
\[
{}y^{\prime }-y^{2}-x -x^{2} = 0
\] |
[_Riccati] |
✓ |
5.135 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -x y-x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.249 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -x y-2 x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.151 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -x y-3 x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.148 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -x y-x^{2}-x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.631 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.730 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -x y-x^{4}-6 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.707 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -x y-x^{5}+24 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.784 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -x y-x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.120 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -x y-x^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.627 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -x y-x^{3} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.708 |
|
\[
{}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.698 |
|
\[
{}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.691 |
|
\[
{}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
0.612 |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.401 |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.371 |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.392 |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.371 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.388 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.377 |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.379 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.363 |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.395 |
|
\[
{}y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.370 |
|
\[
{}y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.441 |
|
\[
{}y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.389 |
|
\[
{}y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.387 |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.369 |
|
\[
{}y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.317 |
|
\[
{}y^{\prime \prime }-x y-x^{3}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.360 |
|
\[
{}y^{\prime \prime }-x y-x^{6}+64 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
8.709 |
|
\[
{}y^{\prime \prime }-x y-x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.722 |
|
\[
{}y^{\prime \prime }-x y-x^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
6.181 |
|
\[
{}y^{\prime \prime }-x y-x^{3} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.490 |
|
\[
{}y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
9.113 |
|
\[
{}y^{\prime \prime }-x^{2} y-x^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.129 |
|
\[
{}y^{\prime \prime }-x^{2} y-x^{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
71.112 |
|
\[
{}y^{\prime \prime }-x^{2} y-x^{4} = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
4.127 |
|
\[
{}y^{\prime \prime }-x^{2} y-x^{4}+2 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
9.331 |
|
\[
{}y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
10.335 |
|
\[
{}y^{\prime \prime }-x^{3} y-x^{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
16.149 |
|
\[
{}y^{\prime \prime }-x^{3} y-x^{4} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
359.991 |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.661 |
|
\[
{}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.745 |
|
\[
{}y^{\prime \prime }-y^{\prime } x -x y-x = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
3.317 |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.773 |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.643 |
|
\[
{}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.725 |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
191.687 |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
5.410 |
|
\[
{}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
578.527 |
|
\[
{}y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.816 |
|
\[
{}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.684 |
|
\[
{}y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
0.738 |
|
\[
{}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✗ |
0.060 |
|
\[
{}y^{\prime \prime }+c y^{\prime }+k y = 0
\] |
[[_2nd_order, _missing_x]] |
✓ |
3.481 |
|
\[
{}w^{\prime } = -\frac {1}{2}-\frac {\sqrt {1-12 w}}{2}
\] |
[_quadrature] |
✓ |
9.985 |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.498 |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.466 |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.707 |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.585 |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.578 |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.240 |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.482 |
|
\[
{}y^{\prime \prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
3.346 |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
75.574 |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
52.575 |
|
\[
{}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
75.618 |
|
\[
{}y^{\prime \prime \prime }+y^{\prime }+y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.562 |
|
\[
{}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
2.009 |
|
\[
{}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.935 |
|
\[
{}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
1.441 |
|
\[
{}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
0.197 |
|
\[
{}x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x
\] |
[[_3rd_order, _with_linear_symmetries]] |
✓ |
3.596 |
|
\[
{}5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0
\] |
[[_high_order, _with_linear_symmetries]] |
✓ |
0.292 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
0.799 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x
\] |
[[_2nd_order, _missing_y]] |
✗ |
1130.267 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
0.565 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0
\] |
[NONE] |
✗ |
0.158 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
0.596 |
|
\[
{}y^{\prime \prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0
\] |
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]] |
✓ |
0.405 |
|
\[
{}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0
\] |
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]] |
✓ |
0.803 |
|
\[
{}y^{\prime } = {\mathrm e}^{-\frac {y}{x}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
2.322 |
|
\[
{}y^{\prime } = 2 x^{2} \sin \left (\frac {y}{x}\right )^{2}+\frac {y}{x}
\] |
[[_homogeneous, ‘class D‘]] |
✓ |
3.598 |
|
\[
{}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (1+\ln \left (x \right )\right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
0.981 |
|
\[
{}v v^{\prime } = \frac {2 v^{2}}{r^{3}}+\frac {\lambda r}{3}
\] |
[_rational, _Bernoulli] |
✓ |
1.617 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 0
\] |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
0.884 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.059 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x +1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
0.998 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
0.958 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+x +1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
1.007 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.026 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{2}+1
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.033 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x^{4}
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.003 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
0.905 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = 1+\sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
1.001 |
|
\[
{}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (-x^{2}+1\right ) y = x \sin \left (x \right )
\] |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
1.077 |
|