| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 3 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer] |
✓ |
✓ |
✓ |
✓ |
0.296 |
|
| \begin{align*}
y^{\prime \prime }&=\left (x -1\right ) y \\
y \left (0\right ) &= 1 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.244 |
|
| \begin{align*}
x \left (2+x \right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
1.125 |
|
| \begin{align*}
y^{\prime \prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.911 |
|
| \begin{align*}
y^{\prime \prime }+\left ({\mathrm e}^{x}-1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.648 |
|
| \begin{align*}
-y-3 y^{\prime } x +\left (1-x \right ) x y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
2.612 |
|
| \begin{align*}
2 y^{\prime \prime } x -y^{\prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.004 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }-\sin \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
1.238 |
|
| \begin{align*}
y^{\prime \prime }-x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.200 |
|
| \begin{align*}
x \left (2+x \right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
1.213 |
|
| \begin{align*}
y^{\prime \prime } x +\left (\frac {1}{2}-x \right ) y^{\prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _exact, _linear, _homogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.154 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {1}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.678 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {9}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.681 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}+\frac {25}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.671 |
|
| \begin{align*}
\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.236 |
|
| \begin{align*}
y^{\prime }+y x&=\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[_linear] |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| \begin{align*}
y^{\prime }+y x&=\frac {1}{x^{3}} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
2.325 |
|
| \begin{align*}
x^{3} y^{\prime \prime }+y&=\frac {1}{x^{4}} \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✓ |
✗ |
0.069 |
|
| \begin{align*}
y^{\prime \prime } x -2 y^{\prime }+y&=\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✗ |
✓ |
✗ |
2.414 |
|
| \begin{align*}
y^{\prime }-\frac {y}{x}&=\cos \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
[_linear] |
✗ |
✗ |
✓ |
✗ |
0.198 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.247 |
|
| \begin{align*}
y^{\prime \prime }+4 y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.230 |
|
| \begin{align*}
y^{\prime \prime }-y x&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.604 |
|
| \begin{align*}
y^{\prime \prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.194 |
|
| \begin{align*}
y^{\prime }-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.183 |
|
| \begin{align*}
\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +p^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]] |
✓ |
✓ |
✓ |
✓ |
0.390 |
|
| \begin{align*}
2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.202 |
|
| \begin{align*}
\left (x^{2}+1\right ) y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.280 |
|
| \begin{align*}
y^{\prime \prime } x +y&=0 \\
\end{align*} Series expansion around \(x=1\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.632 |
|
| \begin{align*}
y^{\prime \prime }+2 x^{3} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.213 |
|
| \begin{align*}
y^{\prime \prime }-y x&=\frac {1}{1-x} \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✗ |
0.596 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.954 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime } x +\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
0.733 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.957 |
|
| \begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}-y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.663 |
|
| \begin{align*}
2 y^{\prime \prime } x +y^{\prime }-x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.014 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x -y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
1.003 |
|
| \begin{align*}
x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+y x&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.570 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✓ |
✗ |
0.109 |
|
| \begin{align*}
y^{\prime \prime } x +x^{3} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.062 |
|
| \begin{align*}
y^{\prime \prime } x +y^{\prime } x -{\mathrm e}^{x} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
3.033 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.223 |
|
| \begin{align*}
y^{\prime \prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
0.203 |
|
| \begin{align*}
x^{3} y^{\prime \prime }+\left (x +1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✗ |
✗ |
✓ |
✗ |
0.068 |
|
| \begin{align*}
y^{\prime \prime } x +x^{5} y^{\prime }+y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.019 |
|
| \begin{align*}
\sin \left (x \right ) y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✗ |
2.921 |
|
| \begin{align*}
\cos \left (x \right ) y^{\prime \prime }-\sin \left (x \right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
0.863 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✗ |
0.977 |
|
| \begin{align*}
x^{2} y^{\prime \prime }+\left (x -\frac {3}{4}\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_2nd_order, _with_linear_symmetries]] |
✓ |
✓ |
✓ |
✓ |
2.546 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-y^{\prime } x +y&=0 \\
\end{align*} Series expansion around \(x=0\). |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
0.649 |
|
| \begin{align*}
\left (1-x \right ) y^{\prime \prime }-4 y^{\prime } x +5 y&=\cos \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✗ |
✓ |
✓ |
✗ |
8.128 |
|
| \begin{align*}
x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y&=0 \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
0.038 |
|
| \begin{align*}
t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y&=0 \\
\end{align*} |
[[_high_order, _with_linear_symmetries]] |
✗ |
✗ |
✓ |
✗ |
0.031 |
|
| \begin{align*}
u^{\prime \prime }+u^{\prime }+u&=\cos \left (r +u\right ) \\
\end{align*} |
[NONE] |
✗ |
✗ |
✗ |
✗ |
1.084 |
|
| \begin{align*}
y^{\prime \prime }&=\sqrt {1+{y^{\prime }}^{2}} \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✗ |
38.575 |
|
| \begin{align*}
R^{\prime \prime }&=-\frac {k}{R^{2}} \\
\end{align*} |
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]] |
✓ |
✓ |
✓ |
✓ |
149.448 |
|
| \begin{align*}
x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✗ |
✗ |
✗ |
✗ |
17.866 |
|
| \begin{align*}
\sin \left (y^{\prime }\right )&=x +y \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✓ |
0.846 |
|
| \begin{align*}
\sin \left (x^{\prime }\right )+y^{3} x&=\sin \left (y \right ) \\
\end{align*} |
[‘y=_G(x,y’)‘] |
✗ |
✗ |
✗ |
✗ |
25.527 |
|
| \begin{align*}
y^{2}-1+y^{\prime } x&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.925 |
|
| \begin{align*}
2 y^{\prime }+y&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.525 |
|
| \begin{align*}
y^{\prime }+20 y&=24 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
y^{\prime \prime }-6 y^{\prime }+13 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
6.281 |
|
| \begin{align*}
y^{\prime \prime }+y&=\tan \left (x \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
1.472 |
|
| \begin{align*}
\left (-x +y\right ) y^{\prime }&=-x +y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.093 |
|
| \begin{align*}
y^{\prime }&=25+y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
7.886 |
|
| \begin{align*}
y^{\prime }&=2 x y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.891 |
|
| \begin{align*}
2 y^{\prime }&=y^{3} \cos \left (x \right ) \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.645 |
|
| \begin{align*}
x^{\prime }&=\left (x-1\right ) \left (1-2 x\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.564 |
|
| \begin{align*}
2 y x +\left (x^{2}-y\right ) y^{\prime }&=0 \\
\end{align*} |
[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.922 |
|
| \begin{align*}
p^{\prime }&=p \left (1-p\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.722 |
|
| \begin{align*}
y^{\prime }+4 y x&=8 x^{3} \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.760 |
|
| \begin{align*}
y^{\prime \prime }-4 y^{\prime }+4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.737 |
|
| \begin{align*}
x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=12 x^{2} \\
\end{align*} |
[[_3rd_order, _exact, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
0.260 |
|
| \begin{align*}
y^{\prime } x -3 y x&=1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.103 |
|
| \begin{align*}
2 y^{\prime } x -y&=2 \cos \left (x \right ) x \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.675 |
|
| \begin{align*}
y x +x^{2} y^{\prime }&=10 \sin \left (x \right ) \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.664 |
|
| \begin{align*}
y^{\prime }+2 y x&=1 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
1.047 |
|
| \begin{align*}
y^{\prime } x -2 y&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.901 |
|
| \begin{align*}
y^{\prime }&=-\frac {x}{y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.578 |
|
| \begin{align*}
2 y+y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.525 |
|
| \begin{align*}
5 y^{\prime }&=2 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.516 |
|
| \begin{align*}
6 y-5 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.096 |
|
| \begin{align*}
2 y^{\prime \prime }+7 y^{\prime }-4 y&=0 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
3.816 |
|
| \begin{align*}
y^{\prime \prime } x +2 y^{\prime }&=0 \\
\end{align*} |
[[_2nd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
11.237 |
|
| \begin{align*}
4 x^{2} y^{\prime \prime }+y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
1.056 |
|
| \begin{align*}
x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y&=0 \\
\end{align*} |
[[_Emden, _Fowler]] |
✓ |
✓ |
✓ |
✓ |
6.893 |
|
| \begin{align*}
x^{2} y^{\prime \prime \prime }-3 y^{\prime \prime } x +3 y^{\prime }&=0 \\
\end{align*} |
[[_3rd_order, _missing_y]] |
✓ |
✓ |
✓ |
✓ |
0.201 |
|
| \begin{align*}
3 y^{\prime } x +5 y&=10 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.214 |
|
| \begin{align*}
y^{\prime }&=y^{2}+2 y-3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.451 |
|
| \begin{align*}
\left (-1+y\right ) y^{\prime }&=1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.546 |
|
| \begin{align*}
y^{\prime \prime }+4 y^{\prime }+6 y&=10 \\
\end{align*} |
[[_2nd_order, _missing_x]] |
✓ |
✓ |
✓ |
✓ |
20.010 |
|
| \begin{align*}
{y^{\prime }}^{2}&=4 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.579 |
|
| \begin{align*}
{y^{\prime }}^{2}&=9-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.543 |
|
| \begin{align*}
y y^{\prime }+\sqrt {16-y^{2}}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.082 |
|
| \begin{align*}
{y^{\prime }}^{2}-2 y^{\prime }+4 y&=4 x -1 \\
\end{align*} |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
✓ |
✓ |
✗ |
0.325 |
|
| \begin{align*}
x^{\prime }&=x+3 y \\
y^{\prime }&=5 x+3 y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.339 |
|
| \begin{align*}
x^{\prime \prime }&=4 y+{\mathrm e}^{t} \\
y^{\prime \prime }&=4 x-{\mathrm e}^{t} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.029 |
|
| \begin{align*}
y^{\prime }&=\sqrt {1-y^{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.010 |
|
| \begin{align*}
y^{\prime \prime }+2 y^{\prime }+4 y&=5 \sin \left (t \right ) \\
\end{align*} |
[[_2nd_order, _linear, _nonhomogeneous]] |
✓ |
✓ |
✓ |
✓ |
27.438 |
|