2.2.91 Problems 9001 to 9100

Table 2.183: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

9001

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (11 x^{2}+5\right ) y^{\prime }+24 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.444

9002

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 y^{\prime } x -\left (-x^{2}+35\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.421

9003

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.420

9004

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.398

9005

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.328

9006

\[ {}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.335

9007

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.109

9008

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[_Gegenbauer]

0.308

9009

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.326

9010

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

[_Gegenbauer]

0.333

9011

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.290

9012

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.195

9013

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.328

9014

\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.321

9015

\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

[_Laguerre]

0.281

9016

\[ {}2 t y^{\prime \prime }+\left (1+t \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.519

9017

\[ {}2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.277

9018

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.297

9019

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.278

9020

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

[_Lienard]

0.323

9021

\[ {}t^{2} y^{\prime \prime }+t \left (1+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.268

9022

\[ {}t y^{\prime \prime }-\left (4+t \right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

0.310

9023

\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.299

9024

\[ {}t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.283

9025

\[ {}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.724

9026

\[ {}t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.284

9027

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.208

9028

\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+y = 0 \]

[_Gegenbauer]

0.424

9029

\[ {}4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.294

9030

\[ {}f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.291

9031

\[ {}z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

[_Lienard]

0.333

9032

\[ {}z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.325

9033

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.205

9034

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.179

9035

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

0.303

9036

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.186

9037

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.256

9038

\[ {}y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[_erf]

0.237

9039

\[ {}y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.279

9040

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.290

9041

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 y^{\prime } x -16 y = 0 \]

[_Gegenbauer]

0.268

9042

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

0.243

9043

\[ {}y^{\prime \prime }+y^{\prime } x +\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.311

9044

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.373

9045

\[ {}4 y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[_Lienard]

0.286

9046

\[ {}y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.256

9047

\[ {}4 x y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.267

9048

\[ {}6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.318

9049

\[ {}3 x^{2} y^{\prime \prime }-x \left (x +8\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

3.627

9050

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.767

9051

\[ {}4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.263

9052

\[ {}x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (1-2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.300

9053

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.352

9054

\[ {}x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.325

9055

\[ {}x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.217

9056

\[ {}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.273

9057

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.247

9058

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.256

9059

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.237

9060

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.436

9061

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.264

9062

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.306

9063

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.270

9064

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (2+3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.299

9065

\[ {}x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.375

9066

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.269

9067

\[ {}x^{2} y^{\prime \prime }+2 x \left (x +2\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.289

9068

\[ {}x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.286

9069

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.154

9070

\[ {}x^{2} y^{\prime \prime }+x \left (4+x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.291

9071

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.314

9072

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

0.164

9073

\[ {}2 x y^{\prime \prime }+5 \left (1-2 x \right ) y^{\prime }-5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.395

9074

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.183

9075

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.461

9076

\[ {}x^{4} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.370

9077

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.296

9078

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.489

9079

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.244

9080

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.247

9081

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (-\frac {1}{4} x -x^{2}\right ) y^{\prime }-\frac {5 y x}{16} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.399

9082

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.300

9083

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.329

9084

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.285

9085

\[ {}2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.514

9086

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

[_Jacobi]

0.270

9087

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.267

9088

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

[_Jacobi]

0.264

9089

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

[_Jacobi]

0.277

9090

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.229

9091

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.312

9092

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.152

9093

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.162

9094

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.313

9095

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.350

9096

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.331

9097

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

0.395

9098

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.129

9099

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.360

9100

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.330