| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.923 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.599 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (3\right ) &= 3 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.393 |
|
| \begin{align*}
y^{\prime }&=\cos \left (y\right ) \sin \left (x \right ) \\
y \left (0\right ) &= -{\frac {5}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.214 |
|
| \begin{align*}
y^{\prime }&=x \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.787 |
|
| \begin{align*}
y^{\prime }&=x \\
y \left (0\right ) &= -3 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
2.888 |
|
| \begin{align*}
y^{\prime }&=x +y \\
y \left (-2\right ) &= 2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.012 |
|
| \begin{align*}
y^{\prime }&=x +y \\
y \left (1\right ) &= -3 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.973 |
|
| \begin{align*}
y y^{\prime }&=-x \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.503 |
|
| \begin{align*}
y y^{\prime }&=-x \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
7.593 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.482 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{y} \\
y \left (-2\right ) &= -1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.862 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{5}+y \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.798 |
|
| \begin{align*}
y^{\prime }&=\frac {x^{2}}{5}+y \\
y \left (2\right ) &= -1 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.658 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{y} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.536 |
|
| \begin{align*}
y^{\prime }&=x \,{\mathrm e}^{y} \\
y \left (1\right ) &= {\frac {5}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.526 |
|
| \begin{align*}
y^{\prime }&=y-\cos \left (\frac {\pi x}{2}\right ) \\
y \left (2\right ) &= 2 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
2.076 |
|
| \begin{align*}
y^{\prime }&=y-\cos \left (\frac {\pi x}{2}\right ) \\
y \left (-1\right ) &= 0 \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.889 |
|
| \begin{align*}
y^{\prime }&=1-\frac {y}{x} \\
y \left (-\frac {1}{2}\right ) &= 2 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.601 |
|
| \begin{align*}
y^{\prime }&=1-\frac {y}{x} \\
y \left (\frac {3}{2}\right ) &= 0 \\
\end{align*} |
[_linear] |
✓ |
✓ |
✓ |
✓ |
4.487 |
|
| \begin{align*}
y^{\prime }&=x +y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
0.897 |
|
| \begin{align*}
y^{\prime }&=x^{2}+y^{2} \\
\end{align*} |
[[_Riccati, _special]] |
✓ |
✓ |
✓ |
✗ |
38.308 |
|
| \begin{align*}
y^{\prime }&=x \left (y-4\right )^{2}-2 \\
\end{align*} |
[_Riccati] |
✓ |
✓ |
✓ |
✗ |
106.510 |
|
| \begin{align*}
y^{\prime }&=x^{2}-2 y \\
\end{align*} |
[[_linear, ‘class A‘]] |
✓ |
✓ |
✓ |
✓ |
1.639 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.760 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y^{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.747 |
|
| \begin{align*}
y^{\prime }&=y^{2}-3 y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.553 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y^{3} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
9.444 |
|
| \begin{align*}
y^{\prime }&=\left (y-2\right )^{4} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.256 |
|
| \begin{align*}
y^{\prime }&=10+3 y-y^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.833 |
|
| \begin{align*}
y^{\prime }&=y^{2} \left (4-y^{2}\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.775 |
|
| \begin{align*}
y^{\prime }&=y \left (2-y\right ) \left (4-y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.352 |
|
| \begin{align*}
y^{\prime }&=y \ln \left (y+2\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.533 |
|
| \begin{align*}
y^{\prime }&=\left ({\mathrm e}^{y} y-9 y\right ) {\mathrm e}^{-y} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.714 |
|
| \begin{align*}
y^{\prime }&=\frac {2 y}{\pi }-\sin \left (y\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.980 |
|
| \begin{align*}
y^{\prime }&=y^{2}-y-6 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.589 |
|
| \begin{align*}
m v^{\prime }&=m g -k v^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
3.279 |
|
| \begin{align*}
y^{\prime }&=\sin \left (5 x \right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.267 |
|
| \begin{align*}
y^{\prime }&=\left (x +1\right )^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.221 |
|
| \begin{align*}
1+{\mathrm e}^{3 x} y^{\prime }&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.303 |
|
| \begin{align*}
y^{\prime }-\left (-1+y\right )^{2}&=0 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.266 |
|
| \begin{align*}
y^{\prime } x&=4 y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.688 |
|
| \begin{align*}
y^{\prime }+2 x y^{2}&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.502 |
|
| \begin{align*}
y^{\prime }&={\mathrm e}^{3 x +2 y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
1.871 |
|
| \begin{align*}
y \,{\mathrm e}^{x} y^{\prime }&={\mathrm e}^{-y}+{\mathrm e}^{-2 x -y} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.249 |
|
| \begin{align*}
y \ln \left (x \right ) y^{\prime }&=\frac {\left (1+y\right )^{2}}{x^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.211 |
|
| \begin{align*}
y^{\prime }&=\frac {\left (3+2 y\right )^{2}}{\left (5+4 x \right )^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.792 |
|
| \begin{align*}
\csc \left (y\right )+\sec \left (x \right )^{2} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.483 |
|
| \begin{align*}
\sin \left (3 x \right )+2 y \cos \left (3 x \right )^{3} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.780 |
|
| \begin{align*}
\left (1+{\mathrm e}^{y}\right )^{2} {\mathrm e}^{-y}+\left ({\mathrm e}^{x}+1\right )^{3} {\mathrm e}^{-x} y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.142 |
|
| \begin{align*}
x \sqrt {1+y^{2}}&=y y^{\prime } \sqrt {x^{2}+1} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.500 |
|
| \begin{align*}
s^{\prime }&=k s \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.888 |
|
| \begin{align*}
q^{\prime }&=k \left (q-70\right ) \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.677 |
|
| \begin{align*}
p^{\prime }&=p-p^{2} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.099 |
|
| \begin{align*}
n^{\prime }+n&=n t \,{\mathrm e}^{t +2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.683 |
|
| \begin{align*}
y^{\prime }&=\frac {y x +3 x -y-3}{y x -2 x +4 y-8} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.673 |
|
| \begin{align*}
y^{\prime }&=\frac {y x +2 y-x -2}{y x -3 y+x -3} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.066 |
|
| \begin{align*}
y^{\prime }&=x \sqrt {1-y^{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
0.273 |
|
| \begin{align*}
\left ({\mathrm e}^{x}+{\mathrm e}^{-x}\right ) y^{\prime }&=y^{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.409 |
|
| \begin{align*}
x^{\prime }&=4 x^{2}+4 \\
x \left (\frac {\pi }{4}\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
44.802 |
|
| \begin{align*}
y^{\prime }&=\frac {-1+y^{2}}{x^{2}-1} \\
y \left (2\right ) &= 2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
4.481 |
|
| \begin{align*}
x^{2} y^{\prime }&=y-y x \\
y \left (-1\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.181 |
|
| \begin{align*}
y^{\prime }+2 y&=1 \\
y \left (0\right ) &= {\frac {5}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.895 |
|
| \begin{align*}
\sqrt {1-y^{2}}-y^{\prime } \sqrt {-x^{2}+1}&=0 \\
y \left (0\right ) &= \frac {\sqrt {3}}{2} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
14.445 |
|
| \begin{align*}
\left (x^{4}+1\right ) y^{\prime }+x \left (1+4 y^{2}\right )&=0 \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
3.658 |
|
| \begin{align*}
y^{\prime }&=-y \ln \left (y\right ) \\
y \left (0\right ) &= {\mathrm e} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.319 |
|
| \begin{align*}
x \sinh \left (y\right ) y^{\prime }&=\cosh \left (y\right ) \\
y \left (1\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.263 |
|
| \begin{align*}
y^{\prime }&=y \,{\mathrm e}^{-x^{2}} \\
y \left (4\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.910 |
|
| \begin{align*}
y^{\prime }&=y^{2} \sin \left (x^{2}\right ) \\
y \left (-2\right ) &= {\frac {1}{3}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.533 |
|
| \begin{align*}
y^{\prime }&=\left (1+y^{2}\right ) \sqrt {1+\cos \left (x^{3}\right )} \\
y \left (1\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✗ |
✓ |
43.122 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{-2 y} \sin \left (x \right )}{x^{2}+1} \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.197 |
|
| \begin{align*}
y^{\prime }&=\frac {1+3 x}{2 y} \\
y \left (-2\right ) &= -1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.391 |
|
| \begin{align*}
\left (-2+2 y\right ) y^{\prime }&=3 x^{2}+4 x +2 \\
y \left (1\right ) &= -2 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.240 |
|
| \begin{align*}
{\mathrm e}^{y}-{\mathrm e}^{-x} y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.320 |
|
| \begin{align*}
\sin \left (x \right )+y y^{\prime }&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
2.830 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
5.157 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
5.967 |
|
| \begin{align*}
y^{\prime }&=y^{2}-4 \\
y \left (\frac {1}{4}\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✗ |
7.254 |
|
| \begin{align*}
y^{\prime } x&=y^{2}-y \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
5.763 |
|
| \begin{align*}
y^{\prime } x&=y^{2}-y \\
y \left (0\right ) &= 0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✗ |
5.977 |
|
| \begin{align*}
y^{\prime } x&=y^{2}-y \\
y \left (\frac {1}{2}\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
5.296 |
|
| \begin{align*}
y^{\prime } x&=y^{2}-y \\
y \left (2\right ) &= {\frac {1}{4}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.383 |
|
| \begin{align*}
2 x \sin \left (y\right )^{2}-\left (x^{2}+10\right ) \cos \left (y\right ) y^{\prime }&=0 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
3.879 |
|
| \begin{align*}
y^{\prime }&=\left (-1+y\right )^{2} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✗ |
0.552 |
|
| \begin{align*}
y^{\prime }&=\left (-1+y\right )^{2} \\
y \left (0\right ) &= {\frac {101}{100}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.395 |
|
| \begin{align*}
y^{\prime }&=\left (-1+y\right )^{2}+\frac {1}{100} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
0.520 |
|
| \begin{align*}
y^{\prime }&=\left (-1+y\right )^{2}-\frac {1}{100} \\
y \left (0\right ) &= 1 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
1.140 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
2.767 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= {\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
2.592 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= -{\frac {1}{2}} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
2.267 |
|
| \begin{align*}
y^{\prime }&=y-y^{3} \\
y \left (0\right ) &= -2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✗ |
✓ |
2.316 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{-3+y} \\
y \left (0\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.630 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{-3+y} \\
y \left (0\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.684 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{-3+y} \\
y \left (1\right ) &= 2 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
1.711 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{-3+y} \\
y \left (-1\right ) &= 4 \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.568 |
|
| \begin{align*}
y^{\prime }&=\frac {1}{1+\sin \left (x \right )} \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
0.348 |
|
| \begin{align*}
y^{\prime }&=\frac {\sin \left (\sqrt {x}\right )}{\sqrt {y}} \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.263 |
|
| \begin{align*}
\left (\sqrt {x}+x \right ) y^{\prime }&=\sqrt {y}+y \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
6.944 |
|
| \begin{align*}
y^{\prime }&=y^{{2}/{3}}-y \\
\end{align*} |
[_quadrature] |
✓ |
✓ |
✓ |
✓ |
56.970 |
|
| \begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{\sqrt {x}}}{y} \\
y \left (1\right ) &= 4 \\
\end{align*} |
[_separable] |
✓ |
✓ |
✓ |
✓ |
4.024 |
|