6.69 Problems 6801 to 6900

Table 6.137: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

6801

\[ {}y^{\prime \prime }+x^{2} y = x^{2}+x +1 \]

6802

\[ {}2 \left (x^{3}+x^{2}\right ) y^{\prime \prime }-\left (-3 x^{2}+x \right ) y^{\prime }+y = 0 \]

6803

\[ {}4 x y^{\prime \prime }+2 \left (1-x \right ) y^{\prime }-y = 0 \]

6804

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

6805

\[ {}x y^{\prime \prime }+y^{\prime }+x y = 0 \]

6806

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

6807

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = 0 \]

6808

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

6809

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]

6810

\[ {}2 x y^{\prime \prime }+y^{\prime }-y = 1+x \]

6811

\[ {}2 x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

6812

\[ {}x^{3} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }-y = 0 \]

6813

\[ {}z^{\prime \prime }+t z^{\prime }+\left (t^{2}-\frac {1}{9}\right ) z = 0 \]

6814

\[ {}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0 \]

6815

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }-\left (2 x +1\right ) \left (x y^{\prime }-y\right ) = 0 \]

6816

\[ {}x^{3} \left (1+x \right ) y^{\prime \prime \prime }-\left (2+4 x \right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0 \]

6817

\[ {}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y = 0 \]

6818

\[ {}2 \left (2-x \right ) x^{2} y^{\prime \prime }-\left (4-x \right ) x y^{\prime }+\left (3-x \right ) y = 0 \]

6819

\[ {}\left (1-x \right ) x^{2} y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0 \]

6820

\[ {}x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

6821

\[ {}x^{2} y^{\prime \prime }+4 \left (x +a \right ) y = 0 \]

6822

\[ {}x y^{\prime \prime }+\left (x^{3}+1\right ) y^{\prime }+b x y = 0 \]

6823

\[ {}\left (x -1\right ) \left (x -2\right ) y^{\prime \prime }+\left (4 x -6\right ) y^{\prime }+2 y = 0 \]

6824

\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \]

6825

\[ {}y^{\prime \prime }-2 x y^{\prime }+8 y = 0 \]

6826

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+12 y = 0 \]

6827

\[ {}y^{\prime \prime } = \left (x -1\right ) y \]

6828

\[ {}x \left (x +2\right ) y^{\prime \prime }+2 \left (1+x \right ) y^{\prime }-2 y = 0 \]

6829

\[ {}x y^{\prime \prime }+y = 0 \]

6830

\[ {}y^{\prime \prime }+\left ({\mathrm e}^{x}-1\right ) y = 0 \]

6831

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

6832

\[ {}2 x y^{\prime \prime }-y^{\prime }+x^{2} y = 0 \]

6833

\[ {}\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }-y \sin \left (x \right ) = 0 \]

6834

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

6835

\[ {}x \left (x +2\right ) y^{\prime \prime }+\left (1+x \right ) y^{\prime }-4 y = 0 \]

6836

\[ {}x y^{\prime \prime }+\left (\frac {1}{2}-x \right ) y^{\prime }-y = 0 \]

6837

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

6838

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {9}{4}\right ) y = 0 \]

6839

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {25}{4}\right ) y = 0 \]

6840

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

6841

\[ {}y^{\prime }+x y = \cos \left (x \right ) \]

6842

\[ {}y^{\prime }+x y = \frac {1}{x^{3}} \]

6843

\[ {}x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}} \]

6844

\[ {}x y^{\prime \prime }-2 y^{\prime }+y = \cos \left (x \right ) \]

6845

\[ {}y^{\prime }-\frac {y}{x} = \cos \left (x \right ) \]

6846

\[ {}y^{\prime \prime }+y = 0 \]

6847

\[ {}y^{\prime \prime }+4 x y = 0 \]

6848

\[ {}y^{\prime \prime }-x y = 0 \]

6849

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

6850

\[ {}y^{\prime }-x y = 0 \]

6851

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+p^{2} y = 0 \]

6852

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6853

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

6854

\[ {}x y^{\prime \prime }+y = 0 \]

6855

\[ {}y^{\prime \prime }+2 x^{3} y = 0 \]

6856

\[ {}y^{\prime \prime }-x y = \frac {1}{1-x} \]

6857

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

6858

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (1+x \right ) y = 0 \]

6859

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

6860

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-x y = 0 \]

6861

\[ {}2 x y^{\prime \prime }+y^{\prime }-x^{2} y = 0 \]

6862

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-y = 0 \]

6863

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x y = 0 \]

6864

\[ {}x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

6865

\[ {}x y^{\prime \prime }+x^{3} y^{\prime }+y = 0 \]

6866

\[ {}x y^{\prime \prime }+x y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

6867

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+x^{2} y = 0 \]

6868

\[ {}y^{\prime \prime }+y = 0 \]

6869

\[ {}x^{3} y^{\prime \prime }+\left (1+x \right ) y = 0 \]

6870

\[ {}x y^{\prime \prime }+x^{5} y^{\prime }+y = 0 \]

6871

\[ {}\sin \left (x \right ) y^{\prime \prime }-y = 0 \]

6872

\[ {}\cos \left (x \right ) y^{\prime \prime }-y \sin \left (x \right ) = 0 \]

6873

\[ {}x^{2} y^{\prime \prime }-y = 0 \]

6874

\[ {}x^{2} y^{\prime \prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

6875

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

6876

\[ {}\left (1-x \right ) y^{\prime \prime }-4 x y^{\prime }+5 y = \cos \left (x \right ) \]

6877

\[ {}x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y = 0 \]

6878

\[ {}t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y = 0 \]

6879

\[ {}u^{\prime \prime }+u^{\prime }+u = \cos \left (r +u\right ) \]

6880

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

6881

\[ {}R^{\prime \prime } = -\frac {k}{R^{2}} \]

6882

\[ {}x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x = 0 \]

6883

\[ {}\sin \left (y^{\prime }\right ) = x +y \]

6884

\[ {}\sin \left (x^{\prime }\right )+y^{3} x = \sin \left (y \right ) \]

6885

\[ {}y^{2}-1+x y^{\prime } = 0 \]

6886

\[ {}2 y^{\prime }+y = 0 \]

6887

\[ {}y^{\prime }+20 y = 24 \]

6888

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

6889

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

6890

\[ {}\left (y-x \right ) y^{\prime } = y-x \]

6891

\[ {}y^{\prime } = 25+y^{2} \]

6892

\[ {}y^{\prime } = 2 x y^{2} \]

6893

\[ {}2 y^{\prime } = y^{3} \cos \left (x \right ) \]

6894

\[ {}x^{\prime } = \left (x-1\right ) \left (1-2 x\right ) \]

6895

\[ {}2 x y+\left (x^{2}-y\right ) y^{\prime } = 0 \]

6896

\[ {}p^{\prime } = p \left (1-p\right ) \]

6897

\[ {}y^{\prime }+4 x y = 8 x^{3} \]

6898

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6899

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 12 x^{2} \]

6900

\[ {}x y^{\prime }-3 x y = 1 \]