5.1.40 Problems 3901 to 4000

Table 5.79: First order ode

#

ODE

Mathematica

Maple

7857

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

7858

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

7859

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

7860

\[ {}\frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} = 1 \]

7861

\[ {}2 y^{4} x +\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

7862

\[ {}\frac {x y^{\prime }+y}{1-x^{2} y^{2}}+x = 0 \]

7863

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

7864

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

7865

\[ {}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

7866

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

7867

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

7868

\[ {}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

7869

\[ {}\frac {-x y^{\prime }+y}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

7870

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

7871

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

7872

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

7873

\[ {}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \]

7874

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

7875

\[ {}x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

7876

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

7877

\[ {}x y^{\prime } = 2 x -6 y \]

7878

\[ {}x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

7879

\[ {}x^{2} y^{\prime } = 2 x y+y^{2} \]

7880

\[ {}x^{3}+y^{3}-y^{2} y^{\prime } x = 0 \]

7881

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

7882

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

7883

\[ {}2 x -2 y+\left (y-1\right ) y^{\prime } = 0 \]

7884

\[ {}y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

7885

\[ {}2 x +3 y-1-4 \left (1+x \right ) y^{\prime } = 0 \]

7886

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

7887

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

7888

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

7889

\[ {}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \]

7890

\[ {}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \]

7891

\[ {}y^{\prime } = \frac {x^{2}-x y}{y^{2} \cos \left (\frac {x}{y}\right )} \]

7892

\[ {}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \]

7893

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

7894

\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

7895

\[ {}x y^{\prime }+y+3 x^{3} y^{4} y^{\prime } = 0 \]

7896

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

7897

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

7898

\[ {}y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

7899

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]

7900

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

7901

\[ {}y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

7902

\[ {}y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

7903

\[ {}x^{3}+x y^{3}+3 y^{\prime } y^{2} = 0 \]

7904

\[ {}y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \]

7917

\[ {}x y^{\prime }+y = x \]

7918

\[ {}x^{2} y^{\prime }+y = x^{2} \]

7919

\[ {}x^{2} y^{\prime } = y \]

7920

\[ {}\sec \left (x \right ) y^{\prime } = \sec \left (y\right ) \]

7921

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}} \]

7922

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

7923

\[ {}x^{2} y^{\prime }+2 x y = 0 \]

7924

\[ {}-\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

7925

\[ {}x y^{\prime }-y = 2 x \]

7926

\[ {}x^{2} y^{\prime }-2 y = 3 x^{2} \]

7927

\[ {}y^{\prime } y^{2} = x \]

7928

\[ {}\csc \left (x \right ) y^{\prime } = \csc \left (y\right ) \]

7929

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

7930

\[ {}y^{\prime } = \frac {2 y^{2}+x^{2}}{x^{2}-2 y^{2}} \]

7931

\[ {}2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]

7932

\[ {}\frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

8069

\[ {}y^{\prime }+y = \cos \left (x \right ) \]

8073

\[ {}y^{\prime } = 2 x y \]

8075

\[ {}y^{\prime }+y = 1 \]

8077

\[ {}y^{\prime }-y = 2 \]

8079

\[ {}y^{\prime }+y = 0 \]

8081

\[ {}y^{\prime }-y = 0 \]

8083

\[ {}y^{\prime }-y = x^{2} \]

8085

\[ {}x y^{\prime } = y \]

8087

\[ {}x^{2} y^{\prime } = y \]

8089

\[ {}y^{\prime }-\frac {y}{x} = x^{2} \]

8090

\[ {}y^{\prime }+\frac {y}{x} = x \]

8094

\[ {}y^{\prime } = x -y \]

8170

\[ {}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \]

8171

\[ {}L i^{\prime }+R i = E_{0} \delta \left (t \right ) \]

8172

\[ {}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right ) \]

8213

\[ {}y^{\prime } = y^{2}-x \]

8215

\[ {}y^{\prime }-2 y = x^{2} \]

8217

\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \]

8324

\[ {}y^{\prime }-y = 1 \]

8325

\[ {}2 y^{\prime }+y = 0 \]

8326

\[ {}y^{\prime }+6 y = {\mathrm e}^{4 t} \]

8327

\[ {}y^{\prime }-y = 2 \cos \left (5 t \right ) \]

8334

\[ {}y^{\prime }+y = {\mathrm e}^{-3 t} \cos \left (2 t \right ) \]

8336

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]

8337

\[ {}y^{\prime }-y = 1+t \,{\mathrm e}^{t} \]

8348

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \]

8349

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]

8350

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

8356

\[ {}y^{\prime }+y = t \sin \left (t \right ) \]

8357

\[ {}y^{\prime }-y = t \,{\mathrm e}^{t} \sin \left (t \right ) \]

8365

\[ {}y^{\prime }-3 y = \delta \left (t -2\right ) \]

8366

\[ {}y^{\prime }+y = \delta \left (t -1\right ) \]

8435

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

8436

\[ {}x {y^{\prime }}^{2}-\left (3 y+2 x \right ) y^{\prime }+6 y = 0 \]

8437

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

8438

\[ {}x^{2} {y^{\prime }}^{2}+x y^{\prime }-y^{2}-y = 0 \]