5.1.69 Problems 6801 to 6900

Table 5.137: First order ode

#

ODE

Mathematica

Maple

15174

\[ {}\left (x^{2}-4\right ) y^{\prime } = x \]

15175

\[ {}y^{\prime } = \frac {1}{x y-3 x} \]

15176

\[ {}y^{\prime } = \frac {3 y}{1+x}-y^{2} \]

15177

\[ {}\sin \left (y\right )+\left (x +y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

15178

\[ {}\sin \left (y\right )+\left (1+x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

15179

\[ {}\sin \left (x \right )+2 y^{\prime } \cos \left (x \right ) = 0 \]

15180

\[ {}x y y^{\prime } = 2 x^{2}+2 y^{2} \]

15181

\[ {}y^{\prime } = \frac {x +2 y}{x +2 y+3} \]

15182

\[ {}y^{\prime } = \frac {x +2 y}{2 x -y} \]

15183

\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]

15184

\[ {}y^{\prime } = x y^{2}+3 y^{2}+x +3 \]

15185

\[ {}1-\left (x +2 y\right ) y^{\prime } = 0 \]

15186

\[ {}\ln \left (y\right )+\left (\frac {x}{y}+3\right ) y^{\prime } = 0 \]

15187

\[ {}y^{2}+1-y^{\prime } = 0 \]

15188

\[ {}y^{\prime }-3 y = 12 \,{\mathrm e}^{2 x} \]

15189

\[ {}x y y^{\prime } = y^{2}+x y+x^{2} \]

15190

\[ {}\left (x +2\right ) y^{\prime }-x^{3} = 0 \]

15191

\[ {}x y^{3} y^{\prime } = y^{4}-x^{2} \]

15192

\[ {}y^{\prime } = 4 y-\frac {16 \,{\mathrm e}^{4 x}}{y^{2}} \]

15193

\[ {}2 y-6 x +\left (1+x \right ) y^{\prime } = 0 \]

15194

\[ {}x y^{2}+\left (x^{2} y+10 y^{4}\right ) y^{\prime } = 0 \]

15195

\[ {}y y^{\prime }-x y^{2} = 6 x \,{\mathrm e}^{4 x^{2}} \]

15196

\[ {}\left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1 \]

15197

\[ {}x +y \,{\mathrm e}^{x y}+x \,{\mathrm e}^{x y} y^{\prime } = 0 \]

15198

\[ {}y^{2}-y^{2} \cos \left (x \right )+y^{\prime } = 0 \]

15199

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

15200

\[ {}y^{\prime }+2 x = \sin \left (x \right ) \]

15201

\[ {}y^{\prime } = y^{3}-y^{3} \cos \left (x \right ) \]

15202

\[ {}y^{2} {\mathrm e}^{x y^{2}}-2 x +2 x y \,{\mathrm e}^{x y^{2}} y^{\prime } = 0 \]

15203

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

15204

\[ {}y^{\prime } = \tan \left (6 x +3 y+1\right )-2 \]

15205

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

15206

\[ {}y^{\prime } = x \left (6 y+{\mathrm e}^{x^{2}}\right ) \]

15207

\[ {}x \left (1-2 y\right )+\left (y-x^{2}\right ) y^{\prime } = 0 \]

15208

\[ {}x^{2} y^{\prime }+3 x y = 6 \,{\mathrm e}^{-x^{2}} \]

15266

\[ {}x y^{\prime }+3 y = {\mathrm e}^{2 x} \]

15585

\[ {}y^{\prime }+4 y = 0 \]

15586

\[ {}y^{\prime }-2 y = t^{3} \]

15587

\[ {}y^{\prime }+3 y = \operatorname {Heaviside}\left (t -4\right ) \]

15620

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]

15621

\[ {}y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]

15625

\[ {}y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

15628

\[ {}y^{\prime } = 3 \delta \left (t -2\right ) \]

15629

\[ {}y^{\prime } = \delta \left (t -2\right )-\delta \left (t -4\right ) \]

15632

\[ {}y^{\prime }+2 y = 4 \delta \left (t -1\right ) \]

15635

\[ {}y^{\prime }+3 y = \delta \left (t -2\right ) \]

15782

\[ {}y y^{\prime }+y^{4} = \sin \left (x \right ) \]

15784

\[ {}{y^{\prime }}^{2}+y = 0 \]

15788

\[ {}2 x -1-y^{\prime } = 0 \]

15789

\[ {}2 x -y-y y^{\prime } = 0 \]

15790

\[ {}y^{\prime }+2 y = 0 \]

15791

\[ {}y^{\prime }+x y = 0 \]

15792

\[ {}y^{\prime }+y = \sin \left (x \right ) \]

15802

\[ {}y^{\prime } = -\frac {x}{y} \]

15803

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

15804

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

15805

\[ {}y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]

15806

\[ {}\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

15807

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

15808

\[ {}y^{\prime } = \sin \left (x^{2}\right ) x \]

15809

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

15810

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

15811

\[ {}y^{\prime } = x \ln \left (x \right ) \]

15812

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

15813

\[ {}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]

15814

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (1+x \right ) \left (x^{2}+1\right )} \]

15815

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

15816

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

15817

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

15818

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

15819

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

15820

\[ {}y^{\prime }+2 y = 0 \]

15821

\[ {}y^{\prime }+y = \sin \left (t \right ) \]

15828

\[ {}y^{\prime } = 4 x^{3}-x +2 \]

15829

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]

15830

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]

15831

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]

15832

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

15833

\[ {}y^{\prime } = \frac {2 x y+y^{2}}{x^{2}} \]

15834

\[ {}x y^{\prime }+y = \cos \left (x \right ) \]

15837

\[ {}4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

15838

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]

15842

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

15843

\[ {}y^{\prime }-y = \sin \left (x \right ) \]

15850

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

15851

\[ {}y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

15852

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

15853

\[ {}y^{\prime } = x^{2} \sin \left (x \right ) \]

15854

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

15855

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

15856

\[ {}y^{\prime }+2 y = x^{2} \]

15859

\[ {}y^{\prime } = \sin \left (x \right ) \cos \left (x \right )^{2} \]

15860

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]

15861

\[ {}y^{\prime }+t^{2} = y^{2} \]

15862

\[ {}y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

15863

\[ {}y^{\prime } = y+\frac {1}{1-t} \]

15864

\[ {}y^{\prime } = y^{{1}/{5}} \]

15865

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]

15866

\[ {}y^{\prime } = 4 t^{2}-t y^{2} \]

15867

\[ {}y^{\prime } = y \sqrt {t} \]