4.12.8 Problems 701 to 800

Table 4.1093: Third and higher order linear ODE

#

ODE

Mathematica

Maple

Sympy

8818

\[ {} y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t} = 0 \]

8820

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-4 y = f \left (x \right ) \]

8825

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \sin \left (3 x \right ) \]

8840

\[ {} a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

8868

\[ {} y^{\prime \prime \prime } = x^{2} \]

8926

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

8927

\[ {} y^{\prime \prime \prime \prime }+16 y = 0 \]

8928

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

8929

\[ {} y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0 \]

8930

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

8931

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

8932

\[ {} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

8933

\[ {} y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0 \]

8934

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = 0 \]

8935

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0 \]

8938

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

8939

\[ {} y^{\left (5\right )}+2 y = 0 \]

8940

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

8941

\[ {} y^{\prime \prime \prime }+y = 0 \]

8942

\[ {} y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0 \]

8944

\[ {} y^{\prime \prime \prime \prime }-k^{4} y = 0 \]

8945

\[ {} y^{\prime \prime \prime }-y = x \]

8946

\[ {} y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x} \]

8947

\[ {} y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right ) \]

8948

\[ {} y-4 y^{\prime }+6 y^{\prime \prime }-4 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = {\mathrm e}^{x} \]

8949

\[ {} y^{\prime \prime \prime \prime }-y = \cos \left (x \right ) \]

8958

\[ {} y^{\prime \prime \prime } = x^{2}+{\mathrm e}^{-x} \sin \left (x \right ) \]

8959

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

8969

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

8981

\[ {} y^{\prime \prime \prime }-x y = 0 \]

8989

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

9092

\[ {} 2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

9270

\[ {} y^{\prime }+y^{\prime \prime \prime } = \sin \left (x \right ) \]

9302

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

9303

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

9304

\[ {} y^{\prime \prime \prime }-y = 0 \]

9305

\[ {} y^{\prime \prime \prime }+y = 0 \]

9306

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

9307

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

9308

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

9309

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

9310

\[ {} y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

9311

\[ {} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

9312

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

9313

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

9314

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

9315

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

9316

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

9317

\[ {} y^{\prime \prime \prime \prime } = 0 \]

9318

\[ {} y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

9319

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

9320

\[ {} y^{\prime \prime \prime }-y^{\prime } = 1 \]

9321

\[ {} 3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

9322

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

9323

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

9324

\[ {} x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

9618

\[ {} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }-3 y^{\prime }-2 y = {\mathrm e}^{-t} \]

9619

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y = \sin \left (3 t \right ) \]

9858

\[ {} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

9901

\[ {} 8 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

10144

\[ {} y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

10158

\[ {} y^{\prime \prime \prime }+y^{\prime }+y = x \]

10162

\[ {} x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 0 \]

10163

\[ {} x^{4} y^{\prime \prime \prime }+x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = x \]

10164

\[ {} 5 x^{5} y^{\prime \prime \prime \prime }+4 x^{4} y^{\prime \prime \prime }+x^{2} y^{\prime }+x y = 0 \]

10465

\[ {} -2 y+5 y^{\prime }-3 y^{\prime \prime }-y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x} \]

10470

\[ {} y^{\prime \prime \prime }-x y = 0 \]

12723

\[ {} y^{\prime \prime \prime }-\lambda y = 0 \]

12724

\[ {} y^{\prime \prime \prime }+a \,x^{3} y-b x = 0 \]

12725

\[ {} y^{\prime \prime \prime }-a \,x^{b} y = 0 \]

12726

\[ {} y^{\prime \prime \prime }+3 y^{\prime }-4 y = 0 \]

12727

\[ {} y^{\prime \prime \prime }-a^{2} y^{\prime }-{\mathrm e}^{2 a x} \sin \left (x \right )^{2} = 0 \]

12728

\[ {} a y+2 a x y^{\prime }+y^{\prime \prime \prime } = 0 \]

12729

\[ {} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+\left (a +b -1\right ) x y^{\prime }-b y a = 0 \]

12730

\[ {} y^{\prime \prime \prime }+x^{2 c -2} y^{\prime }+\left (c -1\right ) x^{2 c -3} y = 0 \]

12731

\[ {} y^{\prime \prime \prime }-\left (6 k^{2} \sin \left (x \right )^{2}+a \right ) y^{\prime }+b y = 0 \]

12732

\[ {} f^{\prime }\left (x \right ) y+2 f \left (x \right ) y^{\prime }+y^{\prime \prime \prime } = 0 \]

12733

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0 \]

12734

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-a^{2} y^{\prime }+2 a^{2} y-\sinh \left (x \right ) = 0 \]

12735

\[ {} y^{\prime \prime \prime }-3 a y^{\prime \prime }+3 a^{2} y^{\prime }-a^{3} y-{\mathrm e}^{a x} = 0 \]

12736

\[ {} y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y = 0 \]

12737

\[ {} y^{\prime \prime \prime }-6 x y^{\prime \prime }+2 \left (4 x^{2}+2 a -1\right ) y^{\prime }-8 a x y = 0 \]

12738

\[ {} a^{3} x^{3} y+3 a^{2} x^{2} y^{\prime }+3 a x y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

12739

\[ {} y^{\prime \prime \prime }-\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y-\ln \left (x \right ) = 0 \]

12740

\[ {} f \left (x \right ) y+y^{\prime }+f \left (x \right ) y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

12741

\[ {} y^{\prime \prime \prime }+f \left (x \right ) \left (x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y\right ) = 0 \]

12742

\[ {} 18 \,{\mathrm e}^{x}-3 y-11 y^{\prime }-8 y^{\prime \prime }+4 y^{\prime \prime \prime } = 0 \]

12743

\[ {} x y^{\prime \prime \prime }+3 y^{\prime \prime }+x y = 0 \]

12744

\[ {} x y^{\prime \prime \prime }+3 y^{\prime \prime }-a \,x^{2} y = 0 \]

12745

\[ {} x y^{\prime \prime \prime }+\left (a +b \right ) y^{\prime \prime }-x y^{\prime }-a y = 0 \]

12746

\[ {} x y^{\prime \prime \prime }-\left (x +2 v \right ) y^{\prime \prime }-\left (x -2 v -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

12747

\[ {} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y-f \left (x \right ) = 0 \]

12748

\[ {} 2 x y^{\prime \prime \prime }+3 y^{\prime \prime }+a x y-b = 0 \]

12749

\[ {} 2 x y^{\prime \prime \prime }-4 \left (x +\nu -1\right ) y^{\prime \prime }+\left (2 x +6 \nu -5\right ) y^{\prime }+\left (1-2 \nu \right ) y = 0 \]

12750

\[ {} 2 x y^{\prime \prime \prime }+3 \left (2 a x +k \right ) y^{\prime \prime }+6 \left (a k +b x \right ) y^{\prime }+\left (3 b k +2 c x \right ) y = 0 \]

12751

\[ {} \left (x -2\right ) x y^{\prime \prime \prime }-x \left (x -2\right ) y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

12752

\[ {} \left (2 x -1\right ) y^{\prime \prime \prime }-8 x y^{\prime }+8 y = 0 \]

12753

\[ {} \left (2 x -1\right ) y^{\prime \prime \prime }+\left (x +4\right ) y^{\prime \prime }+2 y^{\prime } = 0 \]

12754

\[ {} a \,x^{2} y-6 y^{\prime }+x^{2} y^{\prime \prime \prime } = 0 \]

12755

\[ {} x^{2} y^{\prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }-y = 0 \]