6.77 Problems 7601 to 7700

Table 6.153: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

7601

\[ {} y^{\prime }+2 x y = x \]

7602

\[ {} x y^{\prime }+y = 3 x^{3}-1 \]

7603

\[ {} y^{\prime }+y \,{\mathrm e}^{x} = 3 \,{\mathrm e}^{x} \]

7604

\[ {} y^{\prime }-\tan \left (x \right ) y = {\mathrm e}^{\sin \left (x \right )} \]

7605

\[ {} y^{\prime }+2 x y = x \,{\mathrm e}^{-x^{2}} \]

7606

\[ {} y^{\prime }+\cos \left (x \right ) y = {\mathrm e}^{-\sin \left (x \right )} \]

7607

\[ {} x^{2} y^{\prime }+2 x y = 1 \]

7608

\[ {} y^{\prime }+2 y = b \left (x \right ) \]

7609

\[ {} y^{\prime } = y+1 \]

7610

\[ {} y^{\prime } = 1+y^{2} \]

7611

\[ {} y^{\prime } = 1+y^{2} \]

7612

\[ {} y^{\prime \prime }-4 y = 0 \]

7613

\[ {} 3 y^{\prime \prime }+2 y = 0 \]

7614

\[ {} y^{\prime \prime }+16 y = 0 \]

7615

\[ {} y^{\prime \prime } = 0 \]

7616

\[ {} y^{\prime \prime }+2 i y^{\prime }+y = 0 \]

7617

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

7618

\[ {} y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

7619

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

7620

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

7621

\[ {} y^{\prime \prime }+y = 0 \]

7622

\[ {} y^{\prime \prime }+y = 0 \]

7623

\[ {} y^{\prime \prime }+y = 0 \]

7624

\[ {} y^{\prime \prime }+y = 0 \]

7625

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

7626

\[ {} y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0 \]

7627

\[ {} y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

7628

\[ {} y^{\prime \prime }+10 y = 0 \]

7629

\[ {} y^{\prime \prime }+4 y = \cos \left (x \right ) \]

7630

\[ {} y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

7631

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \]

7632

\[ {} y^{\prime \prime }+2 i y^{\prime }+y = x \]

7633

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2} \]

7634

\[ {} y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

7635

\[ {} y^{\prime \prime }+y = 2 \sin \left (x \right ) \sin \left (2 x \right ) \]

7636

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

7637

\[ {} 4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

7638

\[ {} 6 y^{\prime \prime }+5 y^{\prime }-6 y = x \]

7639

\[ {} y^{\prime \prime }+\omega ^{2} y = A \cos \left (\omega x \right ) \]

7640

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

7641

\[ {} y^{\prime \prime \prime \prime }+16 y = 0 \]

7642

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

7643

\[ {} y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0 \]

7644

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

7645

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

7646

\[ {} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

7647

\[ {} y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0 \]

7648

\[ {} y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

7649

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0 \]

7650

\[ {} y^{\prime \prime }+y = 0 \]

7651

\[ {} y^{\prime \prime }-y = 0 \]

7652

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

7653

\[ {} y^{\left (5\right )}+2 y = 0 \]

7654

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

7655

\[ {} y^{\prime \prime \prime }+y = 0 \]

7656

\[ {} y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0 \]

7657

\[ {} y^{\prime \prime }-2 i y^{\prime }-y = 0 \]

7658

\[ {} y^{\prime \prime \prime \prime }-k^{4} y = 0 \]

7659

\[ {} y^{\prime \prime \prime }-y = x \]

7660

\[ {} y^{\prime \prime \prime }-8 y = {\mathrm e}^{i x} \]

7661

\[ {} y^{\prime \prime \prime \prime }+16 y = \cos \left (x \right ) \]

7662

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

7663

\[ {} y^{\prime \prime \prime \prime }-y = \cos \left (x \right ) \]

7664

\[ {} y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \]

7665

\[ {} y^{\prime \prime }+4 y = \cos \left (x \right ) \]

7666

\[ {} y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

7667

\[ {} y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \]

7668

\[ {} y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right ) \]

7669

\[ {} y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x} \]

7670

\[ {} y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

7671

\[ {} y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \]

7672

\[ {} y^{\prime \prime \prime } = x^{2}+{\mathrm e}^{-x} \sin \left (x \right ) \]

7673

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

7674

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

7675

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

7676

\[ {} \left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

7677

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]

7678

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

7679

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

7680

\[ {} x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

7681

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7682

\[ {} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7683

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

7684

\[ {} x^{2} y^{\prime \prime }-2 y = 0 \]

7685

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

7686

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7687

\[ {} y^{\prime \prime }-x y^{\prime }+y = 0 \]

7688

\[ {} y^{\prime \prime }+3 x^{2} y^{\prime }-x y = 0 \]

7689

\[ {} y^{\prime \prime }-x^{2} y = 0 \]

7690

\[ {} y^{\prime \prime }+x^{3} y^{\prime }+x^{2} y = 0 \]

7691

\[ {} y^{\prime \prime }+y = 0 \]

7692

\[ {} y^{\prime \prime }+\left (x -1\right )^{2} y^{\prime }-\left (x -1\right ) y = 0 \]

7693

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

7694

\[ {} y^{\prime \prime }+y \,{\mathrm e}^{x} = 0 \]

7695

\[ {} y^{\prime \prime \prime }-x y = 0 \]

7696

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\alpha \left (\alpha +1\right ) y = 0 \]

7697

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\alpha ^{2} y = 0 \]

7698

\[ {} y^{\prime \prime }-2 x y^{\prime }+2 \alpha y = 0 \]

7699

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

7700

\[ {} 2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]