2.2.2 Performance using own ODE types classification

The types of the ODE’s are described in my ode solver page at ode types The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by my own ode solver, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.

Table 2.5: Percentage solved per own ODE type

Type of ODE

Count

Mathematica

Maple

first_order_ode_linear

1622

100.00%

100.00%

first_order_ode_separable

1433

99.16%
[2496 , 2536 , 4111 , 7138 , 7139 , 7140 , 7141 , 10344 , 16710 , 16731 , 16732 , 17326 ]

99.79%
[16731 , 17386 , 17389 ]

first_order_ode_poly

339

99.71%
[12495 ]

99.71%
[2909 ]

first_order_ode_homogA

1055

99.53%
[3056 , 7429 , 12888 , 17948 , 19259 ]

99.91%
[17386 ]

first_order_ode_homogC

34

100.00%

100.00%

first_order_ode_homogD

1429

99.79%
[3056 , 7429 , 19225 ]

99.93%
[17386 ]

first_order_ode_homogD2

1429

99.79%
[3056 , 7429 , 19225 ]

99.93%
[17386 ]

first_order_ode_homog_maple_C

1140

99.74%
[3056 , 7429 , 12495 ]

99.82%
[2909 , 17386 ]

first_order_ode_bernoulli

1067

99.91%
[2536 ]

99.63%
[7134 , 13730 , 17386 , 17389 ]

first_order_ode_exact

4732

99.34%
[145 , 204 , 769 , 796 , 1535 , 2496 , 2536 , 4298 , 7129 , 7138 , 7139 , 7140 , 7141 , 10353 , 14646 , 14647 , 14650 , 14671 , 14672 , 14698 , 14701 , 14702 , 14703 , 15936 , 16057 , 16061 , 16062 , 16796 , 16797 , 16803 , 17326 ]

99.62%
[2955 , 3034 , 4251 , 5270 , 5507 , 7134 , 7851 , 8488 , 10353 , 13730 , 16057 , 16061 , 16062 , 16789 , 17386 , 17389 , 18125 , 19157 ]

first_order_ode_clairaut

155

99.35%
[18859 ]

99.35%
[5687 ]

first_order_ode_dAlembert

1018

97.54%
[31 , 2912 , 3321 , 4434 , 5595 , 5596 , 5597 , 5604 , 5618 , 5622 , 5649 , 5795 , 7429 , 8479 , 8481 , 8542 , 8546 , 12495 , 16173 , 16859 , 18842 , 18843 , 19550 , 19555 , 19574 ]

99.90%
[7134 ]

first_order_ode_isobaric

1615

98.70%
[204 , 2957 , 3054 , 3056 , 4390 , 4392 , 4393 , 4397 , 5634 , 5638 , 6689 , 7429 , 8475 , 12891 , 13884 , 16710 , 16854 , 17947 , 17968 , 18840 , 19571 ]

99.57%
[5339 , 5384 , 10381 , 10396 , 10548 , 17386 , 18579 ]

first_order_ode_abel

40

97.50%
[2868 ]

100.00%

first_order_ode_quadrature

473

99.58%
[13863 , 19225 ]

100.00%

first_order_ode_autonomous

631

97.31%
[1535 , 5610 , 5619 , 7129 , 13865 , 14646 , 14647 , 14650 , 14671 , 14672 , 14698 , 14701 , 14702 , 14703 , 15936 , 18560 , 19140 ]

99.68%
[7134 , 13730 ]

first_order_ode_lie_symmetry

3944

99.24%
[31 , 204 , 2957 , 3054 , 3056 , 4390 , 4392 , 4393 , 5634 , 5638 , 6689 , 7129 , 8475 , 12495 , 12888 , 12891 , 14646 , 14647 , 14650 , 14671 , 14672 , 14701 , 14702 , 14703 , 16173 , 16710 , 16854 , 18840 , 19259 , 19571 ]

99.70%
[2909 , 5543 , 7134 , 10548 , 10800 , 10922 , 13730 , 17386 , 17432 , 18579 , 18835 , 19304 ]

first_order_ode_ID_1

63

100.00%

100.00%

first_order_ode_differential

38

97.37%
[19225 ]

100.00%

first_order_ode_nonlinear_p_but_separable

34

100.00%

100.00%

first_order_ode_riccati

586

94.88%
[4648 , 4983 , 12025 , 12068 , 12091 , 12128 , 12163 , 12180 , 12181 , 12193 , 12208 , 12212 , 12214 , 12217 , 12225 , 12231 , 12232 , 12233 , 12236 , 12245 , 12254 , 12263 , 12273 , 12275 , 12285 , 12297 , 12298 , 12303 , 12304 , 12305 ]

98.81%
[12037 , 12163 , 12208 , 12273 , 12282 , 12285 , 12304 ]

first_order_ode_reduced_riccati

55

100.00%

100.00%

first_order_ode_time_varying_using_laplace

14

85.71%
[9058 , 9061 ]

92.86%
[9065 ]

first_order_ode_constant_coeff_using_laplace

81

100.00%

100.00%

first_order_ode_flip_role

25

96.00%
[3002 ]

96.00%
[5542 ]

second_order_linear_constant_coeff

2272

99.91%
[17115 , 17189 ]

100.00%

second_order_euler_ode

516

100.00%

100.00%

second_order_nonlinear_exact_ode

59

84.75%
[6012 , 6183 , 6184 , 6185 , 7914 , 15259 , 15260 , 16940 , 18196 ]

100.00%

second_order_linear_exact_ode

454

99.34%
[12609 , 12750 , 13994 ]

100.00%

second_order_ode_missing_x

359

94.71%
[3278 , 3279 , 6012 , 6183 , 6184 , 6185 , 6979 , 7768 , 7914 , 14231 , 15259 , 15260 , 16934 , 16940 , 16941 , 18196 , 18987 , 19399 , 19433 ]

99.16%
[3279 , 11807 , 16947 ]

second_order_ode_missing_y

491

98.57%
[3275 , 8524 , 8526 , 11826 , 13007 , 13934 , 16934 ]

99.39%
[3275 , 3280 , 17986 ]

second_order_integrable_as_is

525

98.48%
[6012 , 6183 , 7914 , 12609 , 12750 , 13994 , 15260 , 18196 ]

100.00%

second_order_integrable_as_is_ABC

524

98.47%
[6012 , 6183 , 7914 , 12609 , 12750 , 13994 , 15260 , 18196 ]

100.00%

second_order_ode_can_be_made_integrable

251

98.80%
[7768 , 8507 , 8508 ]

99.20%
[8507 , 8508 ]

second_order_ode_solved_by_an_integrating_factor

447

100.00%

100.00%

second_order_airy

29

100.00%

100.00%

second_order_change_of_variable_on_x_method_2

629

99.84%
[12706 ]

100.00%

second_order_change_of_variable_on_x_method_1

466

100.00%

100.00%

second_order_change_of_variable_on_y_method_1

208

99.52%
[18036 ]

100.00%

second_order_change_of_variable_on_y_method_2

595

99.50%
[11423 , 12603 , 17166 ]

99.83%
[12603 ]

second_order_nonlinear_solved_by_mainardi_lioville_method

34

100.00%

100.00%

second_order_ode_non_constant_coeff_transformation_on_B

251

99.20%
[12743 , 12761 ]

100.00%

second_order_bessel_ode

239

100.00%

100.00%

second_order_bessel_ode_form_A

10

100.00%

100.00%

second_order_kovacic

4348

99.84%
[9236 , 9238 , 9656 , 9658 , 17189 , 18036 , 18948 ]

100.00%

second_order_adjoint

3421

99.82%
[12557 , 13994 , 17116 , 17189 , 18036 , 18948 ]

100.00%

second_order_ode_constant_coeff_using_laplace

488

100.00%

99.80%
[8181 ]

second_order_ode_time_varying_using_laplace

10

90.00%
[18459 ]

100.00%

second_order_ode_flip_role

8

100.00%

100.00%

reduction_of_order

214

97.66%
[2592 , 13786 , 16204 , 16205 , 19499 ]

98.13%
[2592 , 13786 , 16204 , 16205 ]

higher_order_constant_coeff

972

100.00%

99.90%
[2178 ]

higher_order_Euler_ode

156

100.00%

100.00%

higher_order_ode_constant_coeff_using_laplace

52

100.00%

100.00%

higher_order_ode_exact

65

100.00%

100.00%

higher_order_missing_y

36

100.00%

97.22%
[16927 ]