The types of the ODE’s are described in my ode solver page at ode types The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by my own ode solver, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.
Type of ODE |
Count |
Mathematica |
Maple |
first_order_ode_linear |
1622 |
100.00% |
100.00% |
first_order_ode_separable |
1433 |
99.16% |
|
first_order_ode_poly |
339 |
99.71% |
99.71% |
first_order_ode_homogA |
1055 |
99.91% |
|
first_order_ode_homogC |
34 |
100.00% |
100.00% |
first_order_ode_homogD |
1429 |
99.93% |
|
first_order_ode_homogD2 |
1429 |
99.93% |
|
first_order_ode_homog_maple_C |
1140 |
||
first_order_ode_bernoulli |
1067 |
99.91% |
|
first_order_ode_exact |
4732 |
99.34% |
99.62% |
first_order_ode_clairaut |
155 |
99.35% |
99.35% |
first_order_ode_dAlembert |
1018 |
97.54% |
99.90% |
first_order_ode_isobaric |
1615 |
98.70% |
99.57% |
first_order_ode_abel |
40 |
97.50% |
100.00% |
first_order_ode_quadrature |
473 |
100.00% |
|
first_order_ode_autonomous |
631 |
97.31% |
|
first_order_ode_lie_symmetry |
3944 |
99.24% |
99.70% |
first_order_ode_ID_1 |
63 |
100.00% |
100.00% |
first_order_ode_differential |
38 |
97.37% |
100.00% |
first_order_ode_nonlinear_p_but_separable |
34 |
100.00% |
100.00% |
first_order_ode_riccati |
586 |
94.88% |
98.81% |
first_order_ode_reduced_riccati |
55 |
100.00% |
100.00% |
first_order_ode_time_varying_using_laplace |
14 |
92.86% |
|
first_order_ode_constant_coeff_using_laplace |
81 |
100.00% |
100.00% |
first_order_ode_flip_role |
25 |
96.00% |
96.00% |
second_order_linear_constant_coeff |
2272 |
100.00% |
|
second_order_euler_ode |
516 |
100.00% |
100.00% |
second_order_nonlinear_exact_ode |
59 |
84.75% |
100.00% |
second_order_linear_exact_ode |
454 |
100.00% |
|
second_order_ode_missing_x |
359 |
94.71% |
|
second_order_ode_missing_y |
491 |
||
second_order_integrable_as_is |
525 |
98.48% |
100.00% |
second_order_integrable_as_is_ABC |
524 |
98.47% |
100.00% |
second_order_ode_can_be_made_integrable |
251 |
||
second_order_ode_solved_by_an_integrating_factor |
447 |
100.00% |
100.00% |
second_order_airy |
29 |
100.00% |
100.00% |
second_order_change_of_variable_on_x_method_2 |
629 |
99.84% |
100.00% |
second_order_change_of_variable_on_x_method_1 |
466 |
100.00% |
100.00% |
second_order_change_of_variable_on_y_method_1 |
208 |
99.52% |
100.00% |
second_order_change_of_variable_on_y_method_2 |
595 |
99.83% |
|
second_order_nonlinear_solved_by_mainardi_lioville_method |
34 |
100.00% |
100.00% |
second_order_ode_non_constant_coeff_transformation_on_B |
251 |
100.00% |
|
second_order_bessel_ode |
239 |
100.00% |
100.00% |
second_order_bessel_ode_form_A |
10 |
100.00% |
100.00% |
second_order_kovacic |
4348 |
100.00% |
|
second_order_adjoint |
3421 |
100.00% |
|
second_order_ode_constant_coeff_using_laplace |
488 |
100.00% |
99.80% |
second_order_ode_time_varying_using_laplace |
10 |
90.00% |
100.00% |
second_order_ode_flip_role |
8 |
100.00% |
100.00% |
reduction_of_order |
214 |
||
higher_order_constant_coeff |
972 |
100.00% |
99.90% |
higher_order_Euler_ode |
156 |
100.00% |
100.00% |
higher_order_ode_constant_coeff_using_laplace |
52 |
100.00% |
100.00% |
higher_order_ode_exact |
65 |
100.00% |
100.00% |
higher_order_missing_y |
36 |
100.00% |
97.22% |