2.2.1 Performance using Maple’s ODE types classification

This uses ODE classifications based on Maple’s ode advisor The following table gives count of the number of ODE’s for each ODE type, where the ODE type here is as classified by Maple’s odeadvisor, and the percentage of solved ODE’s of that type for each CAS. It also gives a direct link to the ODE’s that failed if any.

Table 2.3: Percentage solved per Maple ODE type

Type of ODE

Count

Mathematica

Maple

[_quadrature]

1139

98.24%
[1535 , 5610 , 5619 , 7129 , 13863 , 13865 , 14646 , 14647 , 14650 , 14671 , 14672 , 14698 , 14701 , 14702 , 14703 , 15936 , 18560 , 19140 , 19225 , 19552 ]

99.74%
[7134 , 8971 , 13730 ]

[[_2nd_order, _quadrature]]

90

98.89%
[13934 ]

98.89%
[8972 ]

[[_linear, ‘class A‘]]

372

100.00%

99.46%
[8968 , 8969 ]

[_separable]

1536

98.96%
[2496 , 2536 , 4111 , 7138 , 7139 , 7140 , 7141 , 9061 , 10344 , 16710 , 16729 , 16730 , 16731 , 16732 , 16736 , 17326 ]

99.41%
[416 , 417 , 1058 , 1059 , 8086 , 16731 , 17386 , 17389 , 18410 ]

[[_homogeneous, ‘class C‘], _dAlembert]

106

91.51%
[31 , 4434 , 5604 , 5622 , 8770 , 16173 , 16859 , 18842 , 19550 ]

100.00%

[_Riccati]

338

68.05%
[1608 , 2347 , 2348 , 2350 , 2351 , 2352 , 2523 , 2525 , 2526 , 2527 , 3678 , 4648 , 4668 , 4670 , 4683 , 4983 , 5730 , 9013 , 12015 , 12022 , 12035 , 12039 , 12091 , 12108 , 12112 , 12116 , 12121 , 12128 , 12137 , 12152 , 12155 , 12156 , 12157 , 12159 , 12163 , 12177 , 12179 , 12180 , 12181 , 12190 , 12192 , 12193 , 12208 , 12212 , 12214 , 12217 , 12221 , 12225 , 12230 , 12231 , 12232 , 12233 , 12236 , 12238 , 12239 , 12242 , 12245 , 12247 , 12248 , 12251 , 12254 , 12256 , 12257 , 12260 , 12263 , 12265 , 12266 , 12269 , 12273 , 12274 , 12275 , 12279 , 12280 , 12283 , 12285 , 12287 , 12288 , 12289 , 12290 , 12291 , 12292 , 12293 , 12294 , 12296 , 12297 , 12298 , 12299 , 12300 , 12301 , 12302 , 12303 , 12304 , 12305 , 12308 , 12312 , 12313 , 12314 , 12315 , 12316 , 12317 , 12318 , 12319 , 12320 , 12321 , 12322 , 12323 , 12324 , 12325 ]

73.37%
[39 , 1608 , 2347 , 2350 , 2351 , 2352 , 2525 , 2526 , 2527 , 3678 , 4668 , 4670 , 4683 , 5730 , 9013 , 12015 , 12022 , 12035 , 12037 , 12039 , 12094 , 12102 , 12108 , 12112 , 12114 , 12116 , 12121 , 12137 , 12152 , 12155 , 12156 , 12157 , 12159 , 12163 , 12177 , 12179 , 12190 , 12192 , 12208 , 12221 , 12223 , 12230 , 12238 , 12239 , 12242 , 12247 , 12248 , 12251 , 12256 , 12257 , 12260 , 12265 , 12266 , 12269 , 12273 , 12274 , 12279 , 12280 , 12282 , 12283 , 12285 , 12287 , 12288 , 12289 , 12290 , 12291 , 12292 , 12293 , 12294 , 12296 , 12299 , 12300 , 12301 , 12302 , 12304 , 12308 , 12312 , 12313 , 12314 , 12315 , 12316 , 12317 , 12318 , 12319 , 12320 , 12321 , 12322 , 12323 , 12324 , 12325 ]

[[_Riccati, _special]]

36

100.00%

100.00%

[[_homogeneous, ‘class G‘]]

86

94.19%
[4393 , 4397 , 13884 , 17947 , 17968 ]

95.35%
[5339 , 5384 , 10381 , 10396 ]

[_linear]

875

99.66%
[7196 , 7837 , 9058 ]

99.54%
[6845 , 7196 , 7837 , 9065 ]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

39

100.00%

100.00%

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

134

100.00%

100.00%

[[_homogeneous, ‘class A‘], _dAlembert]

172

98.84%
[12888 , 19259 ]

100.00%

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

117

100.00%

99.15%
[17432 ]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

81

100.00%

100.00%

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

278

98.56%
[3056 , 7429 , 16118 , 17948 ]

100.00%

[[_homogeneous, ‘class C‘], _Riccati]

31

100.00%

100.00%

[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

7

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

97

100.00%

100.00%

[_Bernoulli]

148

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Bernoulli]

13

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

50

100.00%

100.00%

[‘y=_G(x,y”)‘]

172

60.47%
[783 , 1135 , 1609 , 1611 , 1612 , 1614 , 1616 , 1618 , 1691 , 2353 , 2356 , 2357 , 2528 , 2531 , 2532 , 2538 , 3287 , 3290 , 4707 , 4712 , 4728 , 4807 , 5355 , 5560 , 5605 , 5631 , 5643 , 6295 , 6884 , 7018 , 7019 , 7020 , 7021 , 8217 , 8731 , 8921 , 10088 , 10093 , 10096 , 10134 , 10383 , 10407 , 10471 , 10472 , 10517 , 10521 , 10542 , 12895 , 12900 , 13080 , 13950 , 13956 , 13975 , 14372 , 15025 , 15084 , 15782 , 16047 , 16671 , 17379 , 17380 , 17381 , 17967 , 18844 , 19308 , 19311 , 19525 , 19564 ]

54.07%
[783 , 1135 , 1609 , 1611 , 1612 , 1614 , 1616 , 1618 , 1691 , 2353 , 2356 , 2357 , 2528 , 2531 , 2532 , 2538 , 3034 , 3287 , 3290 , 4251 , 4707 , 4712 , 4728 , 4739 , 4807 , 5216 , 5355 , 5560 , 5631 , 5642 , 6258 , 6295 , 6884 , 7018 , 7019 , 7020 , 7021 , 7851 , 8217 , 8731 , 8921 , 10088 , 10093 , 10096 , 10134 , 10383 , 10407 , 10463 , 10471 , 10472 , 10517 , 10521 , 10524 , 10542 , 10554 , 12900 , 13080 , 13950 , 13954 , 13956 , 13975 , 14372 , 15025 , 15084 , 16047 , 16671 , 16789 , 17379 , 17380 , 17381 , 17967 , 18125 , 19111 , 19151 , 19157 , 19308 , 19311 , 19525 , 19577 ]

[[_1st_order, _with_linear_symmetries]]

124

91.94%
[4390 , 4392 , 5634 , 5638 , 6689 , 8475 , 12891 , 16854 , 18840 , 19571 ]

95.97%
[10523 , 10548 , 18579 , 18829 , 19261 ]

[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert]

46

100.00%

100.00%

[_exact, _rational]

57

96.49%
[145 , 769 ]

100.00%

[_exact]

121

95.04%
[4298 , 16057 , 16062 , 16796 , 16797 , 16803 ]

98.35%
[16057 , 16062 ]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

9

100.00%

100.00%

[[_2nd_order, _missing_y]]

257

98.05%
[8524 , 8526 , 8880 , 11826 , 13007 ]

98.83%
[8111 , 8973 , 18422 ]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

17

100.00%

100.00%

[[_2nd_order, _missing_x]]

1139

96.22%
[3278 , 6882 , 6971 , 6976 , 9093 , 11610 , 11611 , 11614 , 11615 , 11617 , 11635 , 11636 , 11638 , 11643 , 11661 , 11707 , 11709 , 11835 , 13265 , 13266 , 13698 , 13699 , 13700 , 13701 , 13702 , 14306 , 14307 , 16248 , 16249 , 16934 , 17174 , 17176 , 17179 , 17183 , 17189 , 17546 , 18487 , 18536 , 18613 , 18987 , 19399 , 19433 , 19609 ]

96.84%
[6882 , 6971 , 6976 , 9093 , 11610 , 11611 , 11614 , 11615 , 11617 , 11635 , 11636 , 11638 , 11643 , 11661 , 11707 , 11708 , 11709 , 11835 , 13265 , 13266 , 13698 , 13699 , 13700 , 13701 , 13702 , 14306 , 14307 , 17174 , 17176 , 17179 , 17183 , 17546 , 18487 , 18536 , 18613 , 19609 ]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

15

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

15

93.33%
[14231 ]

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

103

94.17%
[3279 , 6979 , 7768 , 8507 , 8508 , 16941 ]

96.12%
[3279 , 8507 , 8508 , 16947 ]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], _Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

20

65.00%
[6012 , 6183 , 6184 , 6185 , 15259 , 15260 , 16940 ]

100.00%

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

47

100.00%

97.87%
[11807 ]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

90

98.89%
[2956 ]

98.89%
[2956 ]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

201

98.51%
[2912 , 5795 , 12495 ]

99.00%
[2906 , 2909 ]

[[_1st_order, _with_linear_symmetries], _Clairaut]

93

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

5

100.00%

100.00%

[[_homogeneous, ‘class G‘], _exact, _rational]

12

83.33%
[204 , 796 ]

100.00%

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

159

99.37%
[14350 ]

99.37%
[14350 ]

[[_Emden, _Fowler]]

405

100.00%

97.78%
[3512 , 6062 , 6560 , 7224 , 7256 , 7257 , 8252 , 8285 , 14142 ]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

13

7.69%
[232 , 8775 , 8776 , 11600 , 11663 , 11685 , 11689 , 11691 , 11694 , 11695 , 13992 , 14986 ]

23.08%
[232 , 8775 , 11600 , 11663 , 11685 , 11689 , 11691 , 11694 , 11695 , 14986 ]

[[_2nd_order, _exact, _linear, _homogeneous]]

294

99.66%
[13994 ]

98.30%
[491 , 7258 , 8128 , 8286 , 14143 ]

[[_3rd_order, _missing_x]]

255

100.00%

100.00%

[[_3rd_order, _with_linear_symmetries]]

204

90.69%
[7485 , 11460 , 11461 , 11462 , 11463 , 11464 , 11465 , 11466 , 11476 , 11477 , 11479 , 11487 , 11492 , 11503 , 11516 , 11517 , 11532 , 15295 , 18614 ]

91.67%
[7485 , 11460 , 11461 , 11462 , 11463 , 11464 , 11465 , 11466 , 11476 , 11477 , 11479 , 11487 , 11492 , 11511 , 11516 , 11532 , 15295 ]

[[_2nd_order, _with_linear_symmetries]]

3239

95.18%
[1755 , 7481 , 7486 , 8249 , 8846 , 8847 , 8850 , 8851 , 8855 , 8857 , 8956 , 9236 , 9238 , 9656 , 9658 , 11029 , 11036 , 11038 , 11040 , 11041 , 11047 , 11081 , 11082 , 11083 , 11085 , 11089 , 11163 , 11211 , 11218 , 11222 , 11241 , 11283 , 11310 , 11366 , 11406 , 11412 , 11423 , 11438 , 11443 , 11444 , 11445 , 11447 , 11604 , 11647 , 11657 , 11658 , 11659 , 11662 , 11664 , 11665 , 11666 , 11671 , 11672 , 11676 , 11677 , 11679 , 11683 , 11718 , 11741 , 11761 , 11776 , 11778 , 11779 , 11810 , 11817 , 11818 , 11819 , 11830 , 11831 , 12509 , 12517 , 12532 , 12537 , 12548 , 12550 , 12551 , 12552 , 12553 , 12554 , 12557 , 12558 , 12559 , 12560 , 12568 , 12578 , 12584 , 12591 , 12597 , 12598 , 12600 , 12601 , 12602 , 12603 , 12604 , 12619 , 12621 , 12622 , 12642 , 12643 , 12644 , 12648 , 12688 , 12701 , 12705 , 12708 , 12712 , 12715 , 12731 , 12732 , 12741 , 12742 , 12743 , 12744 , 12745 , 12746 , 12747 , 12748 , 12749 , 12754 , 12755 , 12757 , 12758 , 12760 , 12761 , 12762 , 12763 , 12771 , 12776 , 12779 , 12794 , 12795 , 12797 , 12986 , 12987 , 13005 , 13667 , 13671 , 13676 , 13786 , 13985 , 13986 , 13988 , 14000 , 15786 , 16204 , 16205 , 17112 , 17204 , 17560 , 17561 , 17562 , 19009 , 19417 , 19451 , 19499 , 19600 ]

95.68%
[459 , 460 , 472 , 2442 , 2445 , 2453 , 2639 , 2642 , 2659 , 3371 , 4009 , 6045 , 6058 , 6346 , 6864 , 6869 , 7232 , 7486 , 7710 , 8109 , 8117 , 8249 , 8260 , 8847 , 8855 , 8857 , 8956 , 11029 , 11036 , 11038 , 11040 , 11041 , 11047 , 11081 , 11082 , 11083 , 11085 , 11089 , 11163 , 11211 , 11218 , 11222 , 11241 , 11283 , 11412 , 11443 , 11444 , 11445 , 11447 , 11604 , 11647 , 11657 , 11658 , 11659 , 11662 , 11664 , 11665 , 11666 , 11671 , 11672 , 11676 , 11679 , 11681 , 11683 , 11718 , 11741 , 11761 , 11776 , 11819 , 11830 , 11831 , 11833 , 12532 , 12548 , 12550 , 12552 , 12553 , 12558 , 12559 , 12560 , 12591 , 12597 , 12598 , 12601 , 12602 , 12603 , 12604 , 12622 , 12643 , 12644 , 12648 , 12688 , 12698 , 12699 , 12700 , 12703 , 12708 , 12710 , 12715 , 12731 , 12732 , 12741 , 12742 , 12746 , 12747 , 12748 , 12749 , 12757 , 12758 , 12760 , 12763 , 12780 , 12785 , 12787 , 12792 , 12793 , 12794 , 12797 , 13005 , 13580 , 13581 , 13667 , 13676 , 13786 , 13988 , 14000 , 15786 , 16204 , 16205 , 16533 , 17560 , 17561 , 17562 , 18420 , 18428 , 18437 , 19009 , 19417 , 19451 , 19600 ]

[_Gegenbauer]

91

100.00%

100.00%

[[_high_order, _missing_x]]

283

100.00%

100.00%

[[_3rd_order, _missing_y]]

142

100.00%

100.00%

[[_3rd_order, _exact, _linear, _homogeneous]]

25

96.00%
[18984 ]

96.00%
[18984 ]

[[_2nd_order, _linear, _nonhomogeneous]]

1510

98.81%
[2592 , 9144 , 11084 , 13984 , 13987 , 14017 , 14088 , 14090 , 14484 , 14485 , 17114 , 17115 , 17116 , 17166 , 18036 , 18459 , 18948 , 19620 ]

98.34%
[2592 , 6066 , 6067 , 6843 , 6844 , 7501 , 8181 , 8892 , 8893 , 8894 , 8898 , 8899 , 8901 , 8909 , 8974 , 8975 , 11084 , 13984 , 13987 , 14017 , 14088 , 14090 , 14485 , 18977 , 19620 ]

[[_high_order, _linear, _nonhomogeneous]]

133

98.50%
[11551 , 11580 ]

99.25%
[11580 ]

[[_high_order, _missing_y]]

76

98.68%
[11585 ]

98.68%
[11585 ]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

106

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

100

95.00%
[12516 , 12609 , 12706 , 12750 , 18287 ]

97.00%
[492 , 8127 , 18436 ]

[_Lienard]

73

100.00%

100.00%

[_Bessel]

26

100.00%

96.15%
[18451 ]

[_Jacobi]

41

100.00%

100.00%

[_Laguerre]

51

100.00%

100.00%

system_of_ODEs

1413

96.46%
[604 , 608 , 2789 , 2790 , 2795 , 2812 , 2814 , 2815 , 2817 , 2818 , 3892 , 7772 , 8210 , 8211 , 11889 , 11904 , 11914 , 11917 , 11918 , 11919 , 11920 , 11921 , 11926 , 11927 , 11930 , 11931 , 11932 , 11933 , 11934 , 11935 , 11937 , 13696 , 13697 , 14563 , 14564 , 14565 , 14566 , 14578 , 15779 , 17236 , 17247 , 17254 , 17462 , 17536 , 17537 , 17538 , 17539 , 17540 , 17542 , 17544 ]

96.82%
[608 , 2789 , 2790 , 2795 , 2812 , 2814 , 2815 , 2817 , 2818 , 3892 , 7772 , 8210 , 8211 , 8387 , 11889 , 11904 , 11914 , 11917 , 11918 , 11919 , 11920 , 11921 , 11926 , 11927 , 11930 , 11932 , 11933 , 11935 , 11937 , 13696 , 13697 , 14563 , 14564 , 14565 , 14566 , 14578 , 15779 , 17254 , 17536 , 17537 , 17538 , 17539 , 17540 , 17542 , 17544 ]

[[_high_order, _with_linear_symmetries]]

74

82.43%
[1463 , 11541 , 11542 , 11543 , 11544 , 11571 , 11589 , 17796 , 17798 , 17799 , 17802 , 17804 , 17805 ]

81.08%
[1463 , 6878 , 11541 , 11542 , 11543 , 11544 , 11581 , 11589 , 17796 , 17798 , 17799 , 17802 , 17804 , 17805 ]

[[_homogeneous, ‘class A‘], _rational, _Riccati]

34

100.00%

100.00%

[‘x=_G(y,y”)‘]

17

58.82%
[1200 , 2515 , 3684 , 10583 , 14770 , 17402 , 19112 ]

58.82%
[1200 , 2515 , 3684 , 10583 , 14770 , 17402 , 19112 ]

[[_Abel, ‘2nd type‘, ‘class B‘]]

16

31.25%
[1203 , 1696 , 10263 , 12343 , 12346 , 12366 , 12367 , 12368 , 12388 , 12401 , 12406 ]

43.75%
[1203 , 1696 , 10263 , 12346 , 12366 , 12367 , 12368 , 12388 , 12401 ]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

15

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

38

97.37%
[3002 ]

100.00%

[[_homogeneous, ‘class D‘], _rational]

4

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries]]

12

100.00%

100.00%

[_rational]

127

86.61%
[1689 , 2540 , 2924 , 4354 , 5490 , 5659 , 10491 , 10493 , 10514 , 10895 , 10904 , 12874 , 15837 , 15862 , 17418 , 19527 , 19562 ]

78.74%
[1689 , 2540 , 2924 , 4354 , 5270 , 5490 , 5542 , 5543 , 5659 , 10491 , 10493 , 10514 , 10895 , 10904 , 10922 , 10930 , 12874 , 15837 , 15862 , 17418 , 18835 , 18866 , 19274 , 19304 , 19314 , 19527 , 19562 ]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

137

29.93%
[4079 , 4253 , 5120 , 5127 , 7853 , 8984 , 10247 , 10250 , 10266 , 10278 , 12329 , 12330 , 12337 , 12338 , 12340 , 12342 , 12345 , 12347 , 12349 , 12350 , 12352 , 12353 , 12354 , 12355 , 12356 , 12359 , 12360 , 12361 , 12363 , 12364 , 12365 , 12372 , 12373 , 12374 , 12375 , 12376 , 12377 , 12380 , 12381 , 12382 , 12383 , 12384 , 12385 , 12386 , 12387 , 12389 , 12390 , 12391 , 12392 , 12393 , 12394 , 12395 , 12407 , 12424 , 12425 , 12428 , 12431 , 12432 , 12433 , 12434 , 12435 , 12436 , 12437 , 12438 , 12440 , 12441 , 12442 , 12443 , 12444 , 12445 , 12446 , 12447 , 12448 , 12449 , 12450 , 12451 , 12452 , 12453 , 12454 , 12455 , 12456 , 12457 , 12458 , 12459 , 12460 , 12461 , 12462 , 12463 , 12464 , 12465 , 12466 , 12467 , 12468 , 12469 , 12499 , 12500 ]

51.82%
[4079 , 4253 , 5120 , 5127 , 7853 , 8984 , 10247 , 10250 , 10266 , 10278 , 12337 , 12340 , 12345 , 12352 , 12353 , 12354 , 12355 , 12356 , 12363 , 12364 , 12373 , 12375 , 12376 , 12380 , 12381 , 12384 , 12385 , 12386 , 12387 , 12389 , 12391 , 12392 , 12393 , 12394 , 12395 , 12424 , 12425 , 12431 , 12433 , 12434 , 12435 , 12436 , 12437 , 12438 , 12440 , 12442 , 12443 , 12445 , 12446 , 12447 , 12448 , 12450 , 12451 , 12453 , 12454 , 12455 , 12457 , 12458 , 12459 , 12460 , 12461 , 12462 , 12463 , 12467 , 12468 , 12499 ]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4

100.00%

100.00%

[NONE]

96

35.42%
[1360 , 6877 , 6879 , 8778 , 8882 , 10070 , 10101 , 10215 , 10380 , 10586 , 10587 , 10846 , 10848 , 11594 , 11597 , 11598 , 11602 , 11605 , 11607 , 11608 , 11616 , 11618 , 11622 , 11623 , 11624 , 11627 , 11633 , 11641 , 11642 , 11644 , 11648 , 11674 , 11684 , 11692 , 11701 , 11703 , 11728 , 11731 , 11733 , 11734 , 11737 , 11738 , 11750 , 11756 , 11788 , 11800 , 11801 , 11814 , 11850 , 13974 , 13977 , 13979 , 15265 , 15787 , 17685 , 17686 , 17983 , 18043 , 18222 , 18538 , 19420 , 19613 ]

30.21%
[1360 , 6877 , 6879 , 7906 , 8778 , 8882 , 10070 , 10101 , 10215 , 10380 , 10586 , 10587 , 10846 , 10848 , 11594 , 11597 , 11598 , 11605 , 11607 , 11608 , 11616 , 11618 , 11622 , 11623 , 11624 , 11627 , 11633 , 11641 , 11642 , 11644 , 11648 , 11674 , 11684 , 11692 , 11697 , 11701 , 11703 , 11704 , 11705 , 11720 , 11728 , 11731 , 11733 , 11734 , 11737 , 11738 , 11750 , 11756 , 11788 , 11800 , 11801 , 11814 , 11850 , 13974 , 13977 , 13979 , 15265 , 15787 , 17564 , 17685 , 17686 , 17983 , 18043 , 18222 , 18538 , 19420 , 19613 ]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

35

100.00%

97.14%
[2955 ]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

70

98.57%
[3054 ]

100.00%

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

27

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

56

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational, _Riccati]

5

100.00%

100.00%

[[_Abel, ‘2nd type‘, ‘class A‘]]

34

14.71%
[5020 , 5072 , 6298 , 10219 , 10232 , 12333 , 12334 , 12398 , 12399 , 12400 , 12409 , 12410 , 12411 , 12412 , 12413 , 12427 , 12473 , 12480 , 12481 , 12483 , 12484 , 12486 , 12487 , 12488 , 12489 , 12490 , 12491 , 12492 , 12493 ]

35.29%
[5020 , 5072 , 6298 , 10219 , 10232 , 12398 , 12399 , 12400 , 12409 , 12410 , 12411 , 12412 , 12413 , 12427 , 12473 , 12481 , 12484 , 12488 , 12489 , 12491 , 12492 , 12493 ]

[_rational, _Bernoulli]

58

100.00%

100.00%

[[_homogeneous, ‘class A‘]]

7

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, _Riccati]

22

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Riccati]

10

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Riccati]

1

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2

100.00%

100.00%

[_exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

18

100.00%

100.00%

[_exact, [_Abel, ‘2nd type‘, ‘class B‘]]

6

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

14

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

4

100.00%

100.00%

[_exact, _Bernoulli]

9

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

10

100.00%

100.00%

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

11

90.91%
[6261 ]

90.91%
[6261 ]

[[_homogeneous, ‘class G‘], _rational]

128

99.22%
[2957 ]

98.44%
[5507 , 8488 ]

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

14

100.00%

100.00%

[_rational, _Riccati]

103

95.15%
[12025 , 12068 , 12077 , 12081 , 12082 ]

98.06%
[12077 , 12082 ]

[[_3rd_order, _linear, _nonhomogeneous]]

129

96.90%
[17795 , 17797 , 17801 , 17803 ]

96.12%
[2178 , 17795 , 17797 , 17801 , 17803 ]

[[_3rd_order, _exact, _linear, _nonhomogeneous]]

17

100.00%

100.00%

[[_high_order, _exact, _linear, _nonhomogeneous]]

9

88.89%
[19361 ]

88.89%
[19361 ]

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

39

100.00%

100.00%

[_exact, [_Abel, ‘2nd type‘, ‘class A‘]]

3

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class A‘]]

3

100.00%

100.00%

[_Abel]

31

64.52%
[2354 , 2529 , 4696 , 10061 , 10062 , 10063 , 10064 , 13870 , 14367 , 14674 , 14793 ]

64.52%
[2354 , 2529 , 4696 , 10061 , 10062 , 10063 , 10064 , 13870 , 14367 , 14674 , 14793 ]

[_Laguerre, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

5

100.00%

100.00%

[[_2nd_order, _missing_x], _Duffing, [_2nd_order, _reducible, _mu_x_y1]]

4

100.00%

100.00%

[_rational, _Abel]

21

95.24%
[2868 ]

100.00%

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

3

100.00%

100.00%

[[_homogeneous, ‘class D‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5

100.00%

100.00%

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

9

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

15

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

6

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

41

100.00%

100.00%

[[_homogeneous, ‘class D‘], _Bernoulli]

7

100.00%

100.00%

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

11

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

7

100.00%

100.00%

[[_high_order, _quadrature]]

16

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

33

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

37

97.30%
[3275 ]

91.89%
[3275 , 3280 , 17986 ]

[[_2nd_order, _missing_x], [_2nd_order, _with_potential_symmetries], [_2nd_order, _reducible, _mu_xy]]

7

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

17

100.00%

100.00%

[_dAlembert]

33

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _dAlembert]

72

84.72%
[3321 , 5595 , 5596 , 5597 , 5618 , 5649 , 8479 , 8481 , 8542 , 8546 , 19574 ]

100.00%

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

13

100.00%

100.00%

[[_homogeneous, ‘class G‘], _Clairaut]

3

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

27

96.30%
[18859 ]

100.00%

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

16

100.00%

100.00%

[[_3rd_order, _exact, _nonlinear]]

3

66.67%
[11840 ]

66.67%
[11840 ]

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

7

100.00%

100.00%

[[_3rd_order, _quadrature]]

17

100.00%

100.00%

[[_homogeneous, ‘class G‘], _exact]

3

100.00%

100.00%

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

13

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _rational, _Riccati]

1

100.00%

100.00%

[_erf]

4

100.00%

100.00%

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2

100.00%

100.00%

[[_homogeneous, ‘class D‘]]

13

100.00%

100.00%

[_exact, _rational, _Riccati]

5

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

8

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational]

28

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, _Riccati]

23

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _exact]

5

100.00%

100.00%

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

7

100.00%

100.00%

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

2

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2

100.00%

100.00%

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

39

28.21%
[5017 , 10216 , 10218 , 12331 , 12335 , 12362 , 12378 , 12396 , 12397 , 12414 , 12416 , 12417 , 12421 , 12423 , 12426 , 12439 , 12470 , 12471 , 12472 , 12474 , 12475 , 12476 , 12477 , 12478 , 12479 , 12496 , 12498 , 13275 ]

46.15%
[5017 , 10216 , 10218 , 12331 , 12335 , 12396 , 12397 , 12417 , 12423 , 12426 , 12439 , 12470 , 12471 , 12474 , 12475 , 12476 , 12477 , 12478 , 12496 , 12498 , 13275 ]

[[_homogeneous, ‘class G‘], _dAlembert]

7

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

5

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational]

10

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Chini]

3

100.00%

100.00%

[[_homogeneous, ‘class G‘], _Abel]

4

100.00%

100.00%

[[_homogeneous, ‘class G‘], _Chini]

4

100.00%

100.00%

[_Chini]

4

0.00%
[4699 , 4986 , 6995 , 10069 ]

0.00%
[4699 , 4986 , 6995 , 10069 ]

unknown

11

81.82%
[10353 , 11805 ]

63.64%
[4726 , 10353 , 11805 , 11834 ]

[_rational, [_Riccati, _special]]

10

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Riccati]

3

100.00%

100.00%

[[_homogeneous, ‘class D‘], _Riccati]

21

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, [_Riccati, _special]]

5

100.00%

100.00%

[[_homogeneous, ‘class G‘], _Riccati]

4

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

6

100.00%

100.00%

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

6

100.00%

100.00%

[_exact, _rational, _Bernoulli]

4

75.00%
[16061 ]

75.00%
[16061 ]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

5

100.00%

100.00%

[[_Abel, ‘2nd type‘, ‘class C‘]]

7

71.43%
[5187 , 10282 ]

71.43%
[5187 , 10282 ]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

4

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

22

100.00%

100.00%

[_rational, _dAlembert]

14

92.86%
[10442 ]

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

10

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, _dAlembert]

7

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

17

100.00%

100.00%

[_Clairaut]

8

100.00%

87.50%
[5687 ]

[[_homogeneous, ‘class D‘], _exact, _rational, _Bernoulli]

1

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

13

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

4

50.00%
[7914 , 18196 ]

100.00%

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

9

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

6

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

4

100.00%

100.00%

[[_homogeneous, ‘class G‘], _rational, _Abel]

2

100.00%

100.00%

[[_elliptic, _class_I]]

2

100.00%

100.00%

[[_elliptic, _class_II]]

2

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear]]

1

100.00%

100.00%

[_Hermite]

16

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_y_y1]]

3

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

4

100.00%

100.00%

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

4

75.00%
[19365 ]

75.00%
[19365 ]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

3

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

6

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

39

100.00%

92.31%
[10744 , 10800 , 10801 ]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

8

100.00%

87.50%
[16927 ]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn]]

3

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

3

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

4

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

2

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8

100.00%

100.00%

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[[_Bessel, _modified]]

2

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

3

33.33%
[11625 , 14005 ]

33.33%
[11625 , 14005 ]

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

3

100.00%

100.00%

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

8

100.00%

100.00%

[_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class G‘], [_Abel, ‘2nd type‘, ‘class C‘]]

1

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class C‘]]

7

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

8

100.00%

100.00%

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

4

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _Abel]

13

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

7

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, _Abel]

3

100.00%

100.00%

[[_homogeneous, ‘class C‘], _rational, _Abel]

3

100.00%

100.00%

[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

3

100.00%

100.00%

[[_homogeneous, ‘class D‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘]]

1

100.00%

100.00%

[[_homogeneous, ‘class C‘], _Abel]

3

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

6

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

5

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

10

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

2

100.00%

100.00%

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel]

2

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], _rational, _Abel]

1

100.00%

100.00%

[_Titchmarsh]

2

50.00%
[11025 ]

50.00%
[11025 ]

[_ellipsoidal]

2

100.00%

100.00%

[_Halm]

4

100.00%

100.00%

[[_3rd_order, _fully, _exact, _linear]]

16

100.00%

100.00%

[[_high_order, _fully, _exact, _linear]]

1

100.00%

100.00%

[[_Painleve, ‘1st‘]]

1

0.00%
[11592 ]

0.00%
[11592 ]

[[_Painleve, ‘2nd‘]]

1

0.00%
[11595 ]

0.00%
[11595 ]

[[_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

1

0.00%
[11626 ]

0.00%
[11626 ]

[[_2nd_order, _with_potential_symmetries]]

2

100.00%

100.00%

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

6

100.00%

100.00%

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

4

100.00%

100.00%

[[_2nd_order, _reducible, _mu_xy]]

3

66.67%
[11787 ]

66.67%
[11787 ]

[[_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

50.00%
[11712 ]

[[_Painleve, ‘4th‘]]

1

0.00%
[11736 ]

0.00%
[11736 ]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

4

100.00%

100.00%

[[_Painleve, ‘3rd‘]]

1

0.00%
[11760 ]

0.00%
[11760 ]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

1

100.00%

100.00%

[[_Painleve, ‘5th‘]]

1

0.00%
[11796 ]

0.00%
[11796 ]

[[_Painleve, ‘6th‘]]

1

0.00%
[11806 ]

0.00%
[11806 ]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

3

0.00%
[11815 , 17982 , 18952 ]

0.00%
[11815 , 17982 , 18952 ]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_poly_yn]]

3

0.00%
[11820 , 18982 , 19601 ]

0.00%
[11820 , 18982 , 19601 ]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1]]

1

0.00%
[11824 ]

0.00%
[11824 ]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

7

28.57%
[11837 , 11838 , 11839 , 11854 , 15271 ]

28.57%
[11837 , 11838 , 11839 , 11854 , 15271 ]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

1

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

5

100.00%

100.00%

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

3

66.67%
[11849 ]

66.67%
[11849 ]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

3

100.00%

100.00%

[[_1st_order, _with_linear_symmetries], [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries]]

2

100.00%

100.00%

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

2

0.00%
[13962 , 13976 ]

0.00%
[13962 , 13976 ]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

2

100.00%

100.00%

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

1

100.00%

100.00%

[[_1st_order, _with_exponential_symmetries], _exact]

1

100.00%

100.00%

[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert]

1

100.00%

100.00%

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_poly_yn]]

2

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_high_order, _exact, _linear, _homogeneous]]

3

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1

100.00%

100.00%

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

1

100.00%

100.00%

[[_2nd_order, _missing_x], _Van_der_Pol]

2

50.00%
[17549 ]

50.00%
[17549 ]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

1

100.00%

100.00%

[[_homogeneous, ‘class D‘], _exact, _rational]

1

100.00%

100.00%

[_rational, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1

100.00%

100.00%

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_poly_yn]]

1

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

1

0.00%
[16951 ]

100.00%

[[_2nd_order, _missing_x], [_Emden, _modified]]

1

0.00%
[18044 ]

0.00%
[18044 ]

[[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]]

1

0.00%
[18612 ]

0.00%
[18612 ]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _dAlembert]

2

0.00%
[18843 , 19555 ]

100.00%

[[_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

2

100.00%

100.00%

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2], [_3rd_order, _reducible, _mu_poly_yn]]

2

100.00%

100.00%

[[_3rd_order, _reducible, _mu_y2]]

1

100.00%

100.00%