4.5.4 Problems 301 to 400

Table 4.55: Problems not solved by Mathematica nor by Maple

#

ODE

Mathematica

Maple

11914

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ) \left (a \left (p x \left (t \right )+q y \left (t \right )\right )+\alpha \right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (\beta +b \left (p x \left (t \right )+q y \left (t \right )\right )\right )] \]

11917

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right ) y \left (t \right )^{2}+x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )^{2} y \left (t \right )-x \left (t \right )-y \left (t \right )] \]

11918

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-x \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )-y \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )] \]

11919

\[ {}[x^{\prime }\left (t \right ) = -y \left (t \right )+x \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}-1\right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}-1\right )] \]

11920

\[ {}\left [x^{\prime }\left (t \right ) = -y \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right ), y^{\prime }\left (t \right ) = \left \{\begin {array}{cc} x \left (t \right )^{2}+y \left (t \right )^{2} & 2 x \left (t \right )\le x \left (t \right )^{2}+y \left (t \right )^{2} \\ \left (\frac {x \left (t \right )}{2}-\frac {y \left (t \right )^{2}}{2 x \left (t \right )}\right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}\right ) & \operatorname {otherwise} \end {array}\right .\right ] \]

11921

\[ {}\left [x^{\prime }\left (t \right ) = -y \left (t \right )+\left (\left \{\begin {array}{cc} x \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}-1\right ) \sin \left (\frac {1}{x \left (t \right )^{2}+y \left (t \right )^{2}}\right ) & x \left (t \right )^{2}+y \left (t \right )^{2}\neq 1 \\ 0 & \operatorname {otherwise} \end {array}\right .\right ), y^{\prime }\left (t \right ) = x \left (t \right )+\left (\left \{\begin {array}{cc} y \left (t \right ) \left (x \left (t \right )^{2}+y \left (t \right )^{2}-1\right ) \sin \left (\frac {1}{x \left (t \right )^{2}+y \left (t \right )^{2}}\right ) & x \left (t \right )^{2}+y \left (t \right )^{2}\neq 1 \\ 0 & \operatorname {otherwise} \end {array}\right .\right )\right ] \]

11926

\[ {}\left [x^{\prime \prime }\left (t \right ) = a \,{\mathrm e}^{2 x \left (t \right )}-{\mathrm e}^{-x \left (t \right )}+{\mathrm e}^{-2 x \left (t \right )} \cos \left (y \left (t \right )\right )^{2}, y^{\prime \prime }\left (t \right ) = {\mathrm e}^{-2 x \left (t \right )} \sin \left (y \left (t \right )\right ) \cos \left (y \left (t \right )\right )-\frac {\sin \left (y \left (t \right )\right )}{\cos \left (y \left (t \right )\right )^{3}}\right ] \]

11927

\[ {}\left [x^{\prime \prime }\left (t \right ) = \frac {k x \left (t \right )}{\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{{3}/{2}}}, y^{\prime \prime }\left (t \right ) = \frac {k y \left (t \right )}{\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{{3}/{2}}}\right ] \]

11930

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ) \left (y \left (t \right )-z \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (z \left (t \right )-x \left (t \right )\right ), z^{\prime }\left (t \right ) = z \left (t \right ) \left (x \left (t \right )-y \left (t \right )\right )] \]

11932

\[ {}\left [x^{\prime }\left (t \right ) = \frac {x \left (t \right )^{2}}{2}-\frac {y \left (t \right )}{24}, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )-3 z \left (t \right ), z^{\prime }\left (t \right ) = 3 x \left (t \right ) z \left (t \right )-\frac {y \left (t \right )^{2}}{6}\right ] \]

11933

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ) \left (y \left (t \right )^{2}-z \left (t \right )^{2}\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (z \left (t \right )^{2}-x \left (t \right )^{2}\right ), z^{\prime }\left (t \right ) = z \left (t \right ) \left (x \left (t \right )^{2}-y \left (t \right )^{2}\right )] \]

11935

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right ) y \left (t \right )^{2}+x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )^{2} y \left (t \right )-x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = y \left (t \right )^{2}-x \left (t \right )^{2}] \]

11937

\[ {}[x_{1}^{\prime }\left (t \right ) \sin \left (x_{2} \left (t \right )\right ) = x_{4} \left (t \right ) \sin \left (x_{3} \left (t \right )\right )+x_{5} \left (t \right ) \cos \left (x_{3} \left (t \right )\right ), x_{2}^{\prime }\left (t \right ) = x_{4} \left (t \right ) \cos \left (x_{3} \left (t \right )\right )-x_{5} \left (t \right ) \sin \left (x_{3} \left (t \right )\right ), x_{3}^{\prime }\left (t \right )+x_{1}^{\prime }\left (t \right ) \cos \left (x_{2} \left (t \right )\right ) = a, x_{4}^{\prime }\left (t \right )-\left (1-\lambda \right ) a x_{5} \left (t \right ) = -m \sin \left (x_{2} \left (t \right )\right ) \cos \left (x_{3} \left (t \right )\right ), x_{5}^{\prime }\left (t \right )+\left (1-\lambda \right ) a x_{4} \left (t \right ) = m \sin \left (x_{2} \left (t \right )\right ) \sin \left (x_{3} \left (t \right )\right )] \]

12015

\[ {}y^{\prime } = y^{2}+k \left (a x +b \right )^{n} \left (c x +d \right )^{-n -4} \]

12022

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+a \,x^{2 m} \left (b \,x^{m}+c \right )^{n}-\frac {n^{2}}{4}+\frac {1}{4} \]

12035

\[ {}y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+a \,x^{n +m +1}-a \,x^{m} \]

12039

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} y+c k \,x^{k -1}-b c \,x^{m +k}-a \,c^{2} x^{n +2 k} \]

12077

\[ {}a \left (x^{2}-1\right ) \left (y^{\prime }+\lambda y^{2}\right )+b x \left (x^{2}-1\right ) y+c \,x^{2}+d x +s = 0 \]

12082

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = a \,x^{n -2} y^{2}+b \,x^{m -1} y+c \]

12108

\[ {}y^{\prime } = a \,{\mathrm e}^{\lambda x} y^{2}+b n \,x^{n -1}-a \,b^{2} {\mathrm e}^{\lambda x} x^{2 n} \]

12112

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \lambda \,{\mathrm e}^{\lambda x}-a \,b^{2} x^{n} {\mathrm e}^{2 \lambda x} \]

12116

\[ {}y^{\prime } = a \,x^{n} y^{2}-a \,x^{n} \left (b \,{\mathrm e}^{\lambda x}+c \right ) y+c \,x^{n} \]

12121

\[ {}y^{\prime } = y^{2}+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} {\mathrm e}^{2 \lambda \,x^{2}} \]

12137

\[ {}y^{\prime } = y^{2}-\lambda ^{2}+a \cosh \left (\lambda x \right )^{n} \sinh \left (\lambda x \right )^{-n -4} \]

12152

\[ {}y^{\prime } = a \ln \left (x \right )^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{2 m} \ln \left (x \right )^{n} \]

12155

\[ {}x y^{\prime } = x y^{2}-a^{2} x \ln \left (\beta x \right )^{2}+a \]

12156

\[ {}x y^{\prime } = x y^{2}-a^{2} x \ln \left (\beta x \right )^{2 k}+a k \ln \left (\beta x \right )^{k -1} \]

12157

\[ {}x y^{\prime } = a \,x^{n} y^{2}+b -a \,b^{2} x^{n} \ln \left (x \right )^{2} \]

12159

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+a \left (b \ln \left (x \right )+c \right )^{n}+\frac {1}{4} \]

12163

\[ {}y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n +1} \ln \left (x \right ) y+b \ln \left (x \right )+b \]

12177

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+c \sin \left (\lambda x +a \right )^{n} \sin \left (\lambda x +b \right )^{-n -4} \]

12179

\[ {}y^{\prime } = y^{2}+a \sin \left (b x \right )^{m} y+a \sin \left (b x \right )^{m} \]

12190

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+c \cos \left (\lambda x +a \right )^{n} \cos \left (\lambda x +b \right )^{-n -4} \]

12192

\[ {}y^{\prime } = y^{2}+a \cos \left (b x \right )^{m} y+a \cos \left (b x \right )^{m} \]

12208

\[ {}y^{\prime } = a \tan \left (\lambda x \right )^{n} y^{2}-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda \]

12221

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+c \sin \left (\lambda x \right )^{n} \cos \left (\lambda x \right )^{-n -4} \]

12230

\[ {}y^{\prime } = y^{2}-2 \lambda ^{2} \tan \left (x \right )^{2}-2 \lambda ^{2} \cot \left (\lambda x \right )^{2} \]

12238

\[ {}y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arcsin \left (x \right )^{n} y+b m \,x^{m -1} \]

12239

\[ {}y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arcsin \left (x \right )^{n} \]

12242

\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arcsin \left (x \right )^{m}-n y \]

12247

\[ {}y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arccos \left (x \right )^{n} y+b m \,x^{m -1} \]

12248

\[ {}y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arccos \left (x \right )^{n} \]

12251

\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arccos \left (x \right )^{m}-n y \]

12256

\[ {}y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arctan \left (x \right )^{n} y+b m \,x^{m -1} \]

12257

\[ {}y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arctan \left (x \right )^{n} \]

12260

\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arctan \left (x \right )^{m}-n y \]

12265

\[ {}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}-b \lambda \,x^{m} \operatorname {arccot}\left (x \right )^{n} y+b m \,x^{m -1} \]

12266

\[ {}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \operatorname {arccot}\left (x \right )^{n} \]

12269

\[ {}x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \operatorname {arccot}\left (x \right )^{m}-n y \]

12273

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,x^{n} f \left (x \right ) y+a n \,x^{n -1} \]

12274

\[ {}y^{\prime } = y^{2} f \left (x \right )+a n \,x^{n -1}-a^{2} x^{2 n} f \left (x \right ) \]

12279

\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+a n \,x^{n -1}-a \,x^{n} g \left (x \right )-a^{2} x^{2 n} f \left (x \right ) \]

12280

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,x^{n} g \left (x \right ) y+a n \,x^{n -1}+a^{2} x^{2 n} \left (g \left (x \right )-f \left (x \right )\right ) \]

12283

\[ {}y^{\prime } = y^{2} f \left (x \right )+a \lambda \,{\mathrm e}^{\lambda x}-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \]

12285

\[ {}y^{\prime } = y^{2} f \left (x \right )-f \left (x \right ) \left ({\mathrm e}^{\lambda x} a +b \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \]

12287

\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{\lambda x} g \left (x \right )-a^{2} {\mathrm e}^{2 \lambda x} f \left (x \right ) \]

12288

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \,{\mathrm e}^{\lambda x} g \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x}+a^{2} {\mathrm e}^{2 \lambda x} \left (g \left (x \right )-f \left (x \right )\right ) \]

12289

\[ {}y^{\prime } = y^{2} f \left (x \right )+2 a \lambda x \,{\mathrm e}^{\lambda \,x^{2}}-a^{2} f \left (x \right ) {\mathrm e}^{2 \lambda \,x^{2}} \]

12290

\[ {}y^{\prime } = y^{2} f \left (x \right )+\lambda x y+a f \left (x \right ) {\mathrm e}^{\lambda x} \]

12291

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \tanh \left (\lambda x \right )^{2} \left (f \left (x \right ) a +\lambda \right )+a \lambda \]

12292

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \coth \left (\lambda x \right )^{2} \left (f \left (x \right ) a +\lambda \right )+a \lambda \]

12293

\[ {}y^{\prime } = y^{2} f \left (x \right )-a^{2} f \left (x \right )+a \lambda \sinh \left (\lambda x \right )-a^{2} f \left (x \right ) \sinh \left (\lambda x \right )^{2} \]

12294

\[ {}x y^{\prime } = y^{2} f \left (x \right )+a -a^{2} f \left (x \right ) \ln \left (x \right )^{2} \]

12296

\[ {}y^{\prime } = y^{2} f \left (x \right )-a x \ln \left (x \right ) f \left (x \right ) y+a \ln \left (x \right )+a \]

12299

\[ {}y^{\prime } = y^{2} f \left (x \right )-a^{2} f \left (x \right )+a \lambda \sin \left (\lambda x \right )+a^{2} f \left (x \right ) \sin \left (\lambda x \right )^{2} \]

12300

\[ {}y^{\prime } = y^{2} f \left (x \right )-a^{2} f \left (x \right )+a \lambda \cos \left (\lambda x \right )+a^{2} f \left (x \right ) \cos \left (\lambda x \right )^{2} \]

12301

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \tan \left (\lambda x \right )^{2} \left (f \left (x \right ) a -\lambda \right )+a \lambda \]

12302

\[ {}y^{\prime } = y^{2} f \left (x \right )-a \cot \left (\lambda x \right )^{2} \left (f \left (x \right ) a -\lambda \right )+a \lambda \]

12304

\[ {}y^{\prime } = y^{2} f \left (x \right )-f \left (x \right ) g \left (x \right ) y+g^{\prime }\left (x \right ) \]

12308

\[ {}f \left (x \right )^{2} y^{\prime }-f^{\prime }\left (x \right ) y^{2}+g \left (x \right ) \left (y-f \left (x \right )\right ) = 0 \]

12312

\[ {}y^{\prime } = y^{2}+a^{2} f \left (a x +b \right ) \]

12313

\[ {}y^{\prime } = y^{2}+\frac {f \left (\frac {1}{x}\right )}{x^{4}} \]

12314

\[ {}y^{\prime } = y^{2}+\frac {f \left (\frac {a x +b}{c x +d}\right )}{\left (c x +d \right )^{4}} \]

12315

\[ {}x^{2} y^{\prime } = x^{4} f \left (x \right ) y^{2}+1 \]

12316

\[ {}x^{2} y^{\prime } = y^{2} x^{4}+x^{2 n} f \left (a \,x^{n}+b \right )-\frac {n^{2}}{4}+\frac {1}{4} \]

12317

\[ {}y^{\prime } = y^{2} f \left (x \right )+g \left (x \right ) y+h \left (x \right ) \]

12318

\[ {}y^{\prime } = y^{2}+{\mathrm e}^{2 \lambda x} f \left ({\mathrm e}^{\lambda x}\right )-\frac {\lambda ^{2}}{4} \]

12319

\[ {}y^{\prime } = y^{2}-\frac {\lambda ^{2}}{4}+\frac {{\mathrm e}^{2 \lambda x} f \left (\frac {{\mathrm e}^{\lambda x} a +b}{c \,{\mathrm e}^{\lambda x}+d}\right )}{\left (c \,{\mathrm e}^{\lambda x}+d \right )^{4}} \]

12320

\[ {}y^{\prime } = y^{2}-\lambda ^{2}+\frac {f \left (\coth \left (\lambda x \right )\right )}{\sinh \left (\lambda x \right )^{4}} \]

12321

\[ {}y^{\prime } = y^{2}-\lambda ^{2}+\frac {f \left (\tanh \left (\lambda x \right )\right )}{\cosh \left (\lambda x \right )^{4}} \]

12322

\[ {}x^{2} y^{\prime } = x^{2} y^{2}+f \left (a \ln \left (x \right )+b \right )+\frac {1}{4} \]

12323

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\cot \left (\lambda x \right )\right )}{\sin \left (\lambda x \right )^{4}} \]

12324

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\tan \left (\lambda x \right )\right )}{\cos \left (\lambda x \right )^{4}} \]

12325

\[ {}y^{\prime } = y^{2}+\lambda ^{2}+\frac {f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )}{\sin \left (\lambda x +b \right )^{4}} \]

12331

\[ {}y y^{\prime }-y = A \,x^{k -1}-k B \,x^{k}+k \,B^{2} x^{2 k -1} \]

12335

\[ {}y y^{\prime }-y = -\frac {2 \left (m +1\right )}{\left (m +3\right )^{2}}+A \,x^{m} \]

12337

\[ {}y y^{\prime }-y = \frac {2 m -2}{\left (m -3\right )^{2}}+\frac {2 A \left (m \left (m +3\right ) \sqrt {x}+\left (4 m^{2}+3 m +9\right ) A +\frac {3 m \left (m +3\right ) A^{2}}{\sqrt {x}}\right )}{\left (m -3\right )^{2}} \]

12340

\[ {}y y^{\prime }-y = -\frac {3 x}{16}+\frac {5 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \]

12345

\[ {}y y^{\prime }-y = -\frac {6 X}{25}+\frac {2 A \left (2 \sqrt {x}+19 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{25} \]

12346

\[ {}y y^{\prime }-y = \frac {3 x}{8}+\frac {3 \sqrt {a^{2}+x^{2}}}{8}-\frac {a^{2}}{16 \sqrt {a^{2}+x^{2}}} \]

12352

\[ {}y y^{\prime }-y = -\frac {5 x}{36}+\frac {A}{x^{{7}/{5}}} \]

12353

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {6 A \left (-3 \sqrt {x}+23 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \]

12354

\[ {}y y^{\prime }-y = -\frac {30 x}{121}+\frac {3 A \left (21 \sqrt {x}+35 A +\frac {6 A^{2}}{\sqrt {x}}\right )}{242} \]

12355

\[ {}y y^{\prime }-y = -\frac {3 x}{16}+\frac {A}{x^{{5}/{3}}} \]

12356

\[ {}y y^{\prime }-y = -\frac {12 x}{49}+\frac {4 A \left (-10 \sqrt {x}+27 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{49} \]

12363

\[ {}y y^{\prime }-y = -\frac {x}{4}+\frac {6 A \left (\sqrt {x}+8 A +\frac {5 A^{2}}{\sqrt {x}}\right )}{49} \]

12364

\[ {}y y^{\prime }-y = -\frac {6 x}{25}+\frac {6 A \left (2 \sqrt {x}+7 A +\frac {4 A^{2}}{\sqrt {x}}\right )}{25} \]

12366

\[ {}y y^{\prime }-y = \frac {3 x}{8}+\frac {3 \sqrt {b^{2}+x^{2}}}{8}+\frac {3 b^{2}}{16 \sqrt {b^{2}+x^{2}}} \]

12367

\[ {}y y^{\prime }-y = \frac {9 x}{32}+\frac {15 \sqrt {b^{2}+x^{2}}}{32}+\frac {3 b^{2}}{64 \sqrt {b^{2}+x^{2}}} \]

12368

\[ {}y y^{\prime }-y = -\frac {3 x}{32}-\frac {3 \sqrt {a^{2}+x^{2}}}{32}+\frac {15 a^{2}}{64 \sqrt {a^{2}+x^{2}}} \]