6.254 Problems 25301 to 25400

Table 6.507: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

25301

\[ {} y^{\prime \prime }+\sqrt {y^{\prime }}+y = t \]

25302

\[ {} y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y = \sqrt {t} \]

25303

\[ {} y^{\prime \prime }-2 y = t y \]

25304

\[ {} y^{\prime \prime }+2 y+t \sin \left (y\right ) = 0 \]

25305

\[ {} y^{\prime \prime }+2 y^{\prime }+\sin \left (t \right ) y = 0 \]

25306

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-5\right ) y = 0 \]

25307

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }-y = \sqrt {t} \]

25308

\[ {} t^{2} y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y = t^{2} {\mathrm e}^{-t} \]

25309

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 2 t \]

25310

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

25311

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 2 t \]

25312

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 2 t \]

25313

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 2 t \]

25314

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 2 t \]

25315

\[ {} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 2 t \,{\mathrm e}^{-t} \]

25316

\[ {} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 0 \]

25317

\[ {} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 2 t \,{\mathrm e}^{-t} \]

25318

\[ {} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 2 t \,{\mathrm e}^{-t} \]

25319

\[ {} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 2 t \,{\mathrm e}^{-t} \]

25320

\[ {} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 2 t \,{\mathrm e}^{-t} \]

25321

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = t^{5} \]

25322

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

25323

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = t^{5} \]

25324

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = t^{5} \]

25325

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = t^{5} \]

25326

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = t^{5} \]

25327

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }-4 y = t^{4} \]

25328

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y = \frac {t^{2}+1}{-t^{2}+1} \]

25329

\[ {} \sin \left (t \right ) y^{\prime \prime }+y = \cos \left (t \right ) \]

25330

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+t^{2} y = \cos \left (t \right ) \]

25331

\[ {} y^{\prime \prime }+\sqrt {t}\, y^{\prime }-\sqrt {t -3}\, y = 0 \]

25332

\[ {} t \left (t^{2}-4\right ) y^{\prime \prime }+y = {\mathrm e}^{t} \]

25333

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

25334

\[ {} y^{\prime \prime }+a_{1} \left (t \right ) y^{\prime }+a_{0} \left (t \right ) y = f \left (t \right ) \]

25335

\[ {} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 0 \]

25336

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

25337

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+4 y = 0 \]

25338

\[ {} t^{2} y^{\prime \prime }-2 t y^{\prime } = 0 \]

25339

\[ {} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0 \]

25340

\[ {} 2 t^{2} y^{\prime \prime }-5 t y^{\prime }+3 y = 0 \]

25341

\[ {} 9 t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

25342

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }-2 y = 0 \]

25343

\[ {} 4 t^{2} y^{\prime \prime }+y = 0 \]

25344

\[ {} t^{2} y^{\prime \prime }-3 t y^{\prime }-21 y = 0 \]

25345

\[ {} t^{2} y^{\prime \prime }+7 t y^{\prime }+9 y = 0 \]

25346

\[ {} t^{2} y^{\prime \prime }+y = 0 \]

25347

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }-4 y = 0 \]

25348

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+4 y = 0 \]

25349

\[ {} t^{2} y^{\prime \prime }-3 t y^{\prime }+13 y = 0 \]

25350

\[ {} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0 \]

25351

\[ {} 4 t^{2} y^{\prime \prime }+y = 0 \]

25352

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+4 y = 0 \]

25353

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

25354

\[ {} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y = 0 \]

25355

\[ {} t y^{\prime \prime }+\left (t +1\right ) y^{\prime }+y = 0 \]

25356

\[ {} t y^{\prime \prime }+\left (2+4 t \right ) y^{\prime }+\left (4+4 t \right ) y = 0 \]

25357

\[ {} t y^{\prime \prime }-2 y^{\prime }+t y = 0 \]

25358

\[ {} t y^{\prime \prime }-4 y^{\prime }+t y = 0 \]

25359

\[ {} t y^{\prime \prime }+\left (2+2 t \right ) y^{\prime }+\left (t +2\right ) y = 0 \]

25360

\[ {} -t y^{\prime \prime }+\left (t -2\right ) y^{\prime }+y = 0 \]

25361

\[ {} -t y^{\prime \prime }-2 y^{\prime }+t y = 0 \]

25362

\[ {} t y^{\prime \prime }+\left (2-5 t \right ) y^{\prime }+\left (6 t -5\right ) y = 0 \]

25363

\[ {} t y^{\prime \prime }+2 y^{\prime }+9 t y = 0 \]

25364

\[ {} t y^{\prime \prime \prime }+3 y^{\prime \prime }+t y^{\prime }+y = 0 \]

25365

\[ {} t y^{\prime \prime }+\left (t +2\right ) y^{\prime }+y = 0 \]

25366

\[ {} t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

25367

\[ {} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0 \]

25368

\[ {} 4 t^{2} y^{\prime \prime }+y = 0 \]

25369

\[ {} t^{2} y^{\prime \prime }+2 t y^{\prime } = 0 \]

25370

\[ {} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

25371

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

25372

\[ {} t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

25373

\[ {} t y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+4 y = 0 \]

25374

\[ {} y^{\prime \prime }-2 \sec \left (t \right )^{2} y = 0 \]

25375

\[ {} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y = 0 \]

25376

\[ {} y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y = 0 \]

25377

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

25378

\[ {} \left (1+\cos \left (2 t \right )\right ) y^{\prime \prime }-4 y = 0 \]

25379

\[ {} t^{2} y^{\prime \prime }-2 t y^{\prime }+\left (t^{2}+2\right ) y = 0 \]

25380

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }+2 y = 0 \]

25381

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

25382

\[ {} y^{\prime \prime }+y = \sin \left (t \right ) \]

25383

\[ {} y^{\prime \prime }-4 y = {\mathrm e}^{2 t} \]

25384

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]

25385

\[ {} y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{-3 t} \]

25386

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{3 t} \]

25387

\[ {} y^{\prime \prime }+y = \tan \left (t \right ) \]

25388

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t} \]

25389

\[ {} y^{\prime \prime }+y = \sec \left (t \right ) \]

25390

\[ {} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = t^{4} \]

25391

\[ {} t y^{\prime \prime }-y^{\prime } = 3 t^{2}-1 \]

25392

\[ {} t^{2} y^{\prime \prime }-t y^{\prime }+y = t \]

25393

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}+1} \]

25394

\[ {} y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y = t \]

25395

\[ {} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y = t^{2} {\mathrm e}^{-t} \]

25396

\[ {} t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 4 t^{5} \]

25397

\[ {} y^{\prime \prime }-y = \frac {1}{1+{\mathrm e}^{-t}} \]

25398

\[ {} y^{\prime \prime }+a^{2} y = f \left (t \right ) \]

25399

\[ {} y^{\prime \prime }-a^{2} y = f \left (t \right ) \]

25400

\[ {} y^{\prime \prime }-2 a y^{\prime }+a^{2} y = f \left (t \right ) \]