| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime }+\sqrt {y^{\prime }}+y = t
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+\sqrt {t}\, y^{\prime }+y = \sqrt {t}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y = t y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y+t \sin \left (y\right ) = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+\sin \left (t \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-5\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+t y^{\prime }-y = \sqrt {t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y = t^{2} {\mathrm e}^{-t}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 2 t
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 2 t
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 2 t
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 2 t
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime \prime }-4 t y^{\prime }+6 y = 2 t
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 2 t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 2 t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 2 t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 2 t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 2 t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = t^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = t^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = t^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = t^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = t^{5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+3 t y^{\prime }-4 y = t^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-2 y = \frac {t^{2}+1}{-t^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (t \right ) y^{\prime \prime }+y = \cos \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime \prime }-t y^{\prime }+t^{2} y = \cos \left (t \right )
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+\sqrt {t}\, y^{\prime }-\sqrt {t -3}\, y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t \left (t^{2}-4\right ) y^{\prime \prime }+y = {\mathrm e}^{t}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+a_{1} \left (t \right ) y^{\prime }+a_{0} \left (t \right ) y = f \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (t -1\right ) y^{\prime \prime }-t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} y^{\prime \prime }+t y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-2 t y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 t^{2} y^{\prime \prime }-5 t y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 9 t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+t y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 t^{2} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-3 t y^{\prime }-21 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+7 t y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+t y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+t y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-3 t y^{\prime }+13 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 t^{2} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+t y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime \prime }+\left (t +1\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime \prime }+\left (2+4 t \right ) y^{\prime }+\left (4+4 t \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime \prime }-2 y^{\prime }+t y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }-4 y^{\prime }+t y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime \prime }+\left (2+2 t \right ) y^{\prime }+\left (t +2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -t y^{\prime \prime }+\left (t -2\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -t y^{\prime \prime }-2 y^{\prime }+t y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }+\left (2-5 t \right ) y^{\prime }+\left (6 t -5\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime \prime }+2 y^{\prime }+9 t y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime \prime }+3 y^{\prime \prime }+t y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime \prime }+\left (t +2\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 t^{2} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }+2 t y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 \sec \left (t \right )^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+\cos \left (2 t \right )\right ) y^{\prime \prime }-4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} y^{\prime \prime }-2 t y^{\prime }+\left (t^{2}+2\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-t^{2}+1\right ) y^{\prime \prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y = {\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{-3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = t^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime \prime }-y^{\prime } = 3 t^{2}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} y^{\prime \prime }-t y^{\prime }+y = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\tan \left (t \right ) y^{\prime }-\sec \left (t \right )^{2} y = t
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime \prime }+\left (t -1\right ) y^{\prime }-y = t^{2} {\mathrm e}^{-t}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 4 t^{5}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y = \frac {1}{1+{\mathrm e}^{-t}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+a^{2} y = f \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-a^{2} y = f \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 a y^{\prime }+a^{2} y = f \left (t \right )
\]
|
✓ |
✓ |
✓ |
|