Chapter 1
Lookup tables for all problems in current book

1.1 section 1
1.2 section 2 (system of first order odes)
1.3 section 3. First order odes solved using Laplace method
1.4 section 4. First order odes solved using series method

1.1 section 1

Table 1.1: Lookup table

ID

problem

ODE

Solved?

Maple

Mma

Sympy

10259

1

\begin{align*} y^{\prime }&=0 \\ \end{align*}

10260

2

\begin{align*} y^{\prime }&=a \\ \end{align*}

10261

3

\begin{align*} y^{\prime }&=x \\ \end{align*}

10262

4

\begin{align*} y^{\prime }&=1 \\ \end{align*}

10263

5

\begin{align*} y^{\prime }&=a x \\ \end{align*}

10264

6

\begin{align*} y^{\prime }&=a x y \\ \end{align*}

10265

7

\begin{align*} y^{\prime }&=a x +y \\ \end{align*}

10266

8

\begin{align*} y^{\prime }&=a x +b y \\ \end{align*}

10267

9

\begin{align*} y^{\prime }&=y \\ \end{align*}

10268

10

\begin{align*} y^{\prime }&=b y \\ \end{align*}

10269

11

\begin{align*} y^{\prime }&=a x +b y^{2} \\ \end{align*}

10270

12

\begin{align*} c y^{\prime }&=0 \\ \end{align*}

10271

13

\begin{align*} c y^{\prime }&=a \\ \end{align*}

10272

14

\begin{align*} c y^{\prime }&=a x \\ \end{align*}

10273

15

\begin{align*} c y^{\prime }&=a x +y \\ \end{align*}

10274

16

\begin{align*} c y^{\prime }&=a x +b y \\ \end{align*}

10275

17

\begin{align*} c y^{\prime }&=y \\ \end{align*}

10276

18

\begin{align*} c y^{\prime }&=b y \\ \end{align*}

10277

19

\begin{align*} c y^{\prime }&=a x +b y^{2} \\ \end{align*}

10278

20

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{r} \\ \end{align*}

10279

21

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{r x} \\ \end{align*}

10280

22

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{r \,x^{2}} \\ \end{align*}

10281

23

\begin{align*} c y^{\prime }&=\frac {a x +b y^{2}}{y} \\ \end{align*}

10282

24

\begin{align*} a \sin \left (x \right ) y x y^{\prime }&=0 \\ \end{align*}

10283

25

\begin{align*} f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi &=0 \\ \end{align*}

10284

26

\begin{align*} y^{\prime }&=y+\sin \left (x \right ) \\ \end{align*}

10285

27

\begin{align*} y^{\prime }&=\sin \left (x \right )+y^{2} \\ \end{align*}

10286

28

\begin{align*} y^{\prime }&=\cos \left (x \right )+\frac {y}{x} \\ \end{align*}

10287

29

\begin{align*} y^{\prime }&=\cos \left (x \right )+\frac {y^{2}}{x} \\ \end{align*}

10288

30

\begin{align*} y^{\prime }&=x +y+b y^{2} \\ \end{align*}

10289

31

\begin{align*} y^{\prime } x&=0 \\ \end{align*}

10290

32

\begin{align*} 5 y^{\prime }&=0 \\ \end{align*}

10291

33

\begin{align*} {\mathrm e} y^{\prime }&=0 \\ \end{align*}

10292

34

\begin{align*} \pi y^{\prime }&=0 \\ \end{align*}

10293

35

\begin{align*} \sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

10294

36

\begin{align*} f \left (x \right ) y^{\prime }&=0 \\ \end{align*}

10295

37

\begin{align*} y^{\prime } x&=1 \\ \end{align*}

10296

38

\begin{align*} y^{\prime } x&=\sin \left (x \right ) \\ \end{align*}

10297

39

\begin{align*} \left (x -1\right ) y^{\prime }&=0 \\ \end{align*}

10298

40

\begin{align*} y y^{\prime }&=0 \\ \end{align*}

10299

41

\begin{align*} y y^{\prime } x&=0 \\ \end{align*}

10300

42

\begin{align*} x y \sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

10301

43

\begin{align*} \pi y \sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

10302

44

\begin{align*} x \sin \left (x \right ) y^{\prime }&=0 \\ \end{align*}

10303

45

\begin{align*} x \sin \left (x \right ) {y^{\prime }}^{2}&=0 \\ \end{align*}

10304

46

\begin{align*} y {y^{\prime }}^{2}&=0 \\ \end{align*}

10305

47

\begin{align*} {y^{\prime }}^{n}&=0 \\ \end{align*}

10306

48

\begin{align*} x {y^{\prime }}^{n}&=0 \\ \end{align*}

10307

49

\begin{align*} {y^{\prime }}^{2}&=x \\ \end{align*}

10308

50

\begin{align*} {y^{\prime }}^{2}&=x +y \\ \end{align*}

10309

51

\begin{align*} {y^{\prime }}^{2}&=\frac {y}{x} \\ \end{align*}

10310

52

\begin{align*} {y^{\prime }}^{2}&=\frac {y^{2}}{x} \\ \end{align*}

10311

53

\begin{align*} {y^{\prime }}^{2}&=\frac {y^{3}}{x} \\ \end{align*}

10312

54

\begin{align*} {y^{\prime }}^{3}&=\frac {y^{2}}{x} \\ \end{align*}

10313

55

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{y x} \\ \end{align*}

10314

56

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{x y^{3}} \\ \end{align*}

10315

57

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{x^{2} y^{3}} \\ \end{align*}

10316

58

\begin{align*} {y^{\prime }}^{4}&=\frac {1}{x y^{3}} \\ \end{align*}

10317

59

\begin{align*} {y^{\prime }}^{2}&=\frac {1}{y^{4} x^{3}} \\ \end{align*}

10318

60

\begin{align*} y^{\prime }&=\sqrt {1+6 x +y} \\ \end{align*}

10319

61

\begin{align*} y^{\prime }&=\left (1+6 x +y\right )^{{1}/{3}} \\ \end{align*}

10320

62

\begin{align*} y^{\prime }&=\left (1+6 x +y\right )^{{1}/{4}} \\ \end{align*}

10321

63

\begin{align*} y^{\prime }&=\left (a +b x +y\right )^{4} \\ \end{align*}

10322

64

\begin{align*} y^{\prime }&=\left (\pi +x +7 y\right )^{{7}/{2}} \\ \end{align*}

10323

65

\begin{align*} y^{\prime }&=\left (a +b x +c y\right )^{6} \\ \end{align*}

10324

66

\begin{align*} y^{\prime }&={\mathrm e}^{x +y} \\ \end{align*}

10325

67

\begin{align*} y^{\prime }&=10+{\mathrm e}^{x +y} \\ \end{align*}

10326

68

\begin{align*} y^{\prime }&=10 \,{\mathrm e}^{x +y}+x^{2} \\ \end{align*}

10327

69

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \\ \end{align*}

10328

70

\begin{align*} y^{\prime }&=5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right ) \\ \end{align*}

1.2 section 2 (system of first order odes)

Table 1.3: Lookup table

ID

problem

ODE

Solved?

Maple

Mma

Sympy

10329

1

\begin{align*} x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )&=y \left (t \right )+t \\ x^{\prime }\left (t \right )+y^{\prime }\left (t \right )&=2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t} \\ \end{align*}

10330

2

\begin{align*} 2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )&=y \left (t \right )+t \\ x^{\prime }\left (t \right )+y^{\prime }\left (t \right )&=2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t} \\ \end{align*}

10331

3

\begin{align*} x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )&=y \left (t \right )+t +\sin \left (t \right )+\cos \left (t \right ) \\ x^{\prime }\left (t \right )+y^{\prime }\left (t \right )&=2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t} \\ \end{align*}

1.3 section 3. First order odes solved using Laplace method

Table 1.5: Lookup table

ID

problem

ODE

Solved?

Maple

Mma

Sympy

10332

1

\begin{align*} y^{\prime } t +y&=t \\ y \left (0\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

10333

2

\begin{align*} y^{\prime }-t y&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

10334

3

\begin{align*} y^{\prime } t +y&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

10335

4

\begin{align*} y^{\prime } t +y&=0 \\ y \left (0\right ) &= y_{0} \\ \end{align*}
Using Laplace transform method.

10336

5

\begin{align*} y^{\prime } t +y&=0 \\ y \left (x_{0} \right ) &= y_{0} \\ \end{align*}
Using Laplace transform method.

10337

6

\begin{align*} y^{\prime } t +y&=0 \\ \end{align*}
Using Laplace transform method.

10338

7

\begin{align*} y^{\prime } t +y&=0 \\ y \left (1\right ) &= 5 \\ \end{align*}
Using Laplace transform method.

10339

8

\begin{align*} y^{\prime } t +y&=\sin \left (t \right ) \\ y \left (1\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

10340

9

\begin{align*} y^{\prime } t +y&=t \\ y \left (1\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

10341

10

\begin{align*} y^{\prime } t +y&=t \\ y \left (1\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

10342

11

\begin{align*} t^{2} y+y^{\prime }&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

10343

12

\begin{align*} \left (a t +1\right ) y^{\prime }+y&=t \\ y \left (1\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

10344

13

\begin{align*} y^{\prime }+\left (a t +b t \right ) y&=0 \\ y \left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

10345

14

\begin{align*} y^{\prime }+\left (a t +b t \right ) y&=0 \\ y \left (-3\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

1.4 section 4. First order odes solved using series method

Table 1.7: Lookup table

ID

problem

ODE

Solved?

Maple

Mma

Sympy

10346

1

\begin{align*} y^{\prime }+2 y x&=x \\ \end{align*}
Series expansion around \(x=0\).

10347

2

\begin{align*} y^{\prime }+y&=\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

10348

3

\begin{align*} y^{\prime } x +y&=0 \\ y \left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

10349

4

\begin{align*} y^{\prime } x +y&=x \\ \end{align*}
Series expansion around \(x=0\).

10350

5

\begin{align*} y^{\prime } x +y&=1 \\ \end{align*}
Series expansion around \(x=0\).

10351

6

\begin{align*} y^{\prime } x +y&=\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

10352

7

\begin{align*} y^{\prime } x +y&=2 x^{4}+x^{3}+x \\ \end{align*}
Series expansion around \(x=0\).

10353

8

\begin{align*} y^{\prime } x +y&=\frac {1}{x^{3}} \\ \end{align*}
Series expansion around \(x=0\).

10354

9

\begin{align*} y^{\prime } x +2 y x&=\sqrt {x} \\ \end{align*}
Series expansion around \(x=0\).

10355

10

\begin{align*} y^{\prime }+\frac {y}{x}&=0 \\ \end{align*}
Series expansion around \(x=0\).

10356

11

\begin{align*} \cos \left (x \right ) y^{\prime }+\frac {y}{x}&=x \\ \end{align*}
Series expansion around \(x=0\).

10357

12

\begin{align*} \cos \left (x \right ) y^{\prime }+\frac {y}{x}&=x +\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

10358

13

\begin{align*} y^{\prime } x +y&=\tan \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).

10359

14

\begin{align*} y^{\prime } x +y&=\cos \left (x \right )+\sin \left (x \right ) \\ \end{align*}
Series expansion around \(x=0\).