| ID | problem | ODE | Solved? | Maple | Mma | Sympy |
| 1 |
\begin{align*}
y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 2 |
\begin{align*}
y^{\prime }&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 3 |
\begin{align*}
y^{\prime }&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 4 |
\begin{align*}
y^{\prime }&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 5 |
\begin{align*}
y^{\prime }&=a x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 6 |
\begin{align*}
y^{\prime }&=a x y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 7 |
\begin{align*}
y^{\prime }&=a x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 8 |
\begin{align*}
y^{\prime }&=a x +b y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 9 |
\begin{align*}
y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 10 |
\begin{align*}
y^{\prime }&=b y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 11 |
\begin{align*}
y^{\prime }&=a x +b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 12 |
\begin{align*}
c y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 13 |
\begin{align*}
c y^{\prime }&=a \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 14 |
\begin{align*}
c y^{\prime }&=a x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 15 |
\begin{align*}
c y^{\prime }&=a x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 16 |
\begin{align*}
c y^{\prime }&=a x +b y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 17 |
\begin{align*}
c y^{\prime }&=y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 18 |
\begin{align*}
c y^{\prime }&=b y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 19 |
\begin{align*}
c y^{\prime }&=a x +b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 20 |
\begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{r} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 21 |
\begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{r x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 22 |
\begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{r \,x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 23 |
\begin{align*}
c y^{\prime }&=\frac {a x +b y^{2}}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 24 |
\begin{align*}
a \sin \left (x \right ) y x y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 25 |
\begin{align*}
f \left (x \right ) \sin \left (x \right ) y x y^{\prime } \pi &=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 26 |
\begin{align*}
y^{\prime }&=y+\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 27 |
\begin{align*}
y^{\prime }&=\sin \left (x \right )+y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 28 |
\begin{align*}
y^{\prime }&=\cos \left (x \right )+\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 29 |
\begin{align*}
y^{\prime }&=\cos \left (x \right )+\frac {y^{2}}{x} \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
|
| 30 |
\begin{align*}
y^{\prime }&=x +y+b y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 31 |
\begin{align*}
y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 32 |
\begin{align*}
5 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 33 |
\begin{align*}
{\mathrm e} y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 34 |
\begin{align*}
\pi y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 35 |
\begin{align*}
\sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 36 |
\begin{align*}
f \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 37 |
\begin{align*}
y^{\prime } x&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 38 |
\begin{align*}
y^{\prime } x&=\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 39 |
\begin{align*}
\left (x -1\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 40 |
\begin{align*}
y y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 41 |
\begin{align*}
y y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 42 |
\begin{align*}
x y \sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 43 |
\begin{align*}
\pi y \sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 44 |
\begin{align*}
x \sin \left (x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 45 |
\begin{align*}
x \sin \left (x \right ) {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 46 |
\begin{align*}
y {y^{\prime }}^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 47 |
\begin{align*}
{y^{\prime }}^{n}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 48 |
\begin{align*}
x {y^{\prime }}^{n}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 49 |
\begin{align*}
{y^{\prime }}^{2}&=x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 50 |
\begin{align*}
{y^{\prime }}^{2}&=x +y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 51 |
\begin{align*}
{y^{\prime }}^{2}&=\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 52 |
\begin{align*}
{y^{\prime }}^{2}&=\frac {y^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 53 |
\begin{align*}
{y^{\prime }}^{2}&=\frac {y^{3}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 54 |
\begin{align*}
{y^{\prime }}^{3}&=\frac {y^{2}}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 55 |
\begin{align*}
{y^{\prime }}^{2}&=\frac {1}{y x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 56 |
\begin{align*}
{y^{\prime }}^{2}&=\frac {1}{x y^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 57 |
\begin{align*}
{y^{\prime }}^{2}&=\frac {1}{x^{2} y^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 58 |
\begin{align*}
{y^{\prime }}^{4}&=\frac {1}{x y^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 59 |
\begin{align*}
{y^{\prime }}^{2}&=\frac {1}{y^{4} x^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 60 |
\begin{align*}
y^{\prime }&=\sqrt {1+6 x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 61 |
\begin{align*}
y^{\prime }&=\left (1+6 x +y\right )^{{1}/{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 62 |
\begin{align*}
y^{\prime }&=\left (1+6 x +y\right )^{{1}/{4}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 63 |
\begin{align*}
y^{\prime }&=\left (a +b x +y\right )^{4} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 64 |
\begin{align*}
y^{\prime }&=\left (\pi +x +7 y\right )^{{7}/{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 65 |
\begin{align*}
y^{\prime }&=\left (a +b x +c y\right )^{6} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 66 |
\begin{align*}
y^{\prime }&={\mathrm e}^{x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 67 |
\begin{align*}
y^{\prime }&=10+{\mathrm e}^{x +y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 68 |
\begin{align*}
y^{\prime }&=10 \,{\mathrm e}^{x +y}+x^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 69 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 70 |
\begin{align*}
y^{\prime }&=5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| ID | problem | ODE | Solved? | Maple | Mma | Sympy |
| 1 |
\begin{align*}
x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )&=y \left (t \right )+t \\
x^{\prime }\left (t \right )+y^{\prime }\left (t \right )&=2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| 2 |
\begin{align*}
2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )&=y \left (t \right )+t \\
x^{\prime }\left (t \right )+y^{\prime }\left (t \right )&=2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
|
| 3 |
\begin{align*}
x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-x \left (t \right )&=y \left (t \right )+t +\sin \left (t \right )+\cos \left (t \right ) \\
x^{\prime }\left (t \right )+y^{\prime }\left (t \right )&=2 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
|
| ID | problem | ODE | Solved? | Maple | Mma | Sympy |
| 1 |
\begin{align*}
y^{\prime } t +y&=t \\
y \left (0\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✗ |
✓ |
|
| 2 |
\begin{align*}
y^{\prime }-t y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
|
| 3 |
\begin{align*}
y^{\prime } t +y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
|
| 4 |
\begin{align*}
y^{\prime } t +y&=0 \\
y \left (0\right ) &= y_{0} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✗ |
✓ |
|
| 5 |
\begin{align*}
y^{\prime } t +y&=0 \\
y \left (x_{0} \right ) &= y_{0} \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
|
| 6 |
\begin{align*}
y^{\prime } t +y&=0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
|
| 7 |
\begin{align*}
y^{\prime } t +y&=0 \\
y \left (1\right ) &= 5 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
|
| 8 |
\begin{align*}
y^{\prime } t +y&=\sin \left (t \right ) \\
y \left (1\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✗ |
✓ |
✓ |
|
| 9 |
\begin{align*}
y^{\prime } t +y&=t \\
y \left (1\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
|
| 10 |
\begin{align*}
y^{\prime } t +y&=t \\
y \left (1\right ) &= 1 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
|
| 11 |
\begin{align*}
t^{2} y+y^{\prime }&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
|
| 12 |
\begin{align*}
\left (a t +1\right ) y^{\prime }+y&=t \\
y \left (1\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✗ |
|
| 13 |
\begin{align*}
y^{\prime }+\left (a t +b t \right ) y&=0 \\
y \left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
|
| 14 |
\begin{align*}
y^{\prime }+\left (a t +b t \right ) y&=0 \\
y \left (-3\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
|
| ID | problem | ODE | Solved? | Maple | Mma | Sympy |
| 1 |
\begin{align*}
y^{\prime }+2 y x&=x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 2 |
\begin{align*}
y^{\prime }+y&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
|
| 3 |
\begin{align*}
y^{\prime } x +y&=0 \\
y \left (0\right ) &= 1 \\
\end{align*} Series expansion around \(x=0\). |
✗ |
✗ |
✗ |
✗ |
|
| 4 |
\begin{align*}
y^{\prime } x +y&=x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 5 |
\begin{align*}
y^{\prime } x +y&=1 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 6 |
\begin{align*}
y^{\prime } x +y&=\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 7 |
\begin{align*}
y^{\prime } x +y&=2 x^{4}+x^{3}+x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 8 |
\begin{align*}
y^{\prime } x +y&=\frac {1}{x^{3}} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 9 |
\begin{align*}
y^{\prime } x +2 y x&=\sqrt {x} \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 10 |
\begin{align*}
y^{\prime }+\frac {y}{x}&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 11 |
\begin{align*}
\cos \left (x \right ) y^{\prime }+\frac {y}{x}&=x \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✗ |
✗ |
|
| 12 |
\begin{align*}
\cos \left (x \right ) y^{\prime }+\frac {y}{x}&=x +\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✗ |
✗ |
|
| 13 |
\begin{align*}
y^{\prime } x +y&=\tan \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|
| 14 |
\begin{align*}
y^{\prime } x +y&=\cos \left (x \right )+\sin \left (x \right ) \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✗ |
|