5.9.25 Problems 2401 to 2500

Table 5.677: First order ode linear in derivative

#

ODE

Mathematica

Maple

5773

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

5774

\[ {}x y^{\prime }-y-\sin \left (\frac {y}{x}\right ) x = 0 \]

5775

\[ {}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0 \]

5776

\[ {}y^{2}+\left (x \sqrt {y^{2}-x^{2}}-x y\right ) y^{\prime } = 0 \]

5777

\[ {}\frac {y \cos \left (\frac {y}{x}\right )}{x}-\left (\frac {x \sin \left (\frac {y}{x}\right )}{y}+\cos \left (\frac {y}{x}\right )\right ) y^{\prime } = 0 \]

5778

\[ {}y+x \ln \left (\frac {y}{x}\right ) y^{\prime }-2 x y^{\prime } = 0 \]

5779

\[ {}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0 \]

5780

\[ {}x \,{\mathrm e}^{\frac {y}{x}}-y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

5781

\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \]

5782

\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = x y^{\prime } \]

5783

\[ {}y^{\prime }-\frac {y}{x}+\csc \left (\frac {y}{x}\right ) = 0 \]

5784

\[ {}x y-y^{2}-x^{2} y^{\prime } = 0 \]

5785

\[ {}x +2 y-4-\left (2 x -4 y\right ) y^{\prime } = 0 \]

5786

\[ {}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0 \]

5787

\[ {}x +y+1+\left (2 x +2 y+2\right ) y^{\prime } = 0 \]

5788

\[ {}x +y-1+\left (2 x +2 y-3\right ) y^{\prime } = 0 \]

5789

\[ {}x +y-1-\left (-y+x -1\right ) y^{\prime } = 0 \]

5790

\[ {}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0 \]

5791

\[ {}7 y-3+\left (2 x +1\right ) y^{\prime } = 0 \]

5792

\[ {}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0 \]

5793

\[ {}x +2 y+\left (y-1\right ) y^{\prime } = 0 \]

5794

\[ {}3 x -2 y+4-\left (2 x +7 y-1\right ) y^{\prime } = 0 \]

5795

\[ {}x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0 \]

5796

\[ {}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0 \]

5797

\[ {}y+7+\left (2 x +y+3\right ) y^{\prime } = 0 \]

5798

\[ {}x +y+2-\left (x -y-4\right ) y^{\prime } = 0 \]

5799

\[ {}3 x^{2} y+8 x y^{2}+\left (x^{3}+8 x^{2} y+12 y^{2}\right ) y^{\prime } = 0 \]

5800

\[ {}\frac {2 x y+1}{y}+\frac {\left (y-x \right ) y^{\prime }}{y^{2}} = 0 \]

5801

\[ {}2 x y+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

5802

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

5803

\[ {}\cos \left (y\right )-\left (x \sin \left (y\right )-y^{2}\right ) y^{\prime } = 0 \]

5804

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

5805

\[ {}x^{2}-x +y^{2}-\left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = 0 \]

5806

\[ {}2 x +y \cos \left (x \right )+\left (2 y+\sin \left (x \right )-\sin \left (y\right )\right ) y^{\prime } = 0 \]

5807

\[ {}x \sqrt {x^{2}+y^{2}}-\frac {x^{2} y y^{\prime }}{y-\sqrt {x^{2}+y^{2}}} = 0 \]

5808

\[ {}4 x^{3}-\sin \left (x \right )+y^{3}-\left (y^{2}+1-3 x y^{2}\right ) y^{\prime } = 0 \]

5809

\[ {}{\mathrm e}^{x} \left (y^{3}+x y^{3}+1\right )+3 y^{2} \left (x \,{\mathrm e}^{x}-6\right ) y^{\prime } = 0 \]

5810

\[ {}\sin \left (x \right ) \cos \left (y\right )+\cos \left (x \right ) \sin \left (y\right ) y^{\prime } = 0 \]

5811

\[ {}y^{2} {\mathrm e}^{x y^{2}}+4 x^{3}+\left (2 x y \,{\mathrm e}^{x y^{2}}-3 y^{2}\right ) y^{\prime } = 0 \]

5812

\[ {}y^{2}+y-x y^{\prime } = 0 \]

5813

\[ {}y \sec \left (x \right )+\sin \left (x \right ) y^{\prime } = 0 \]

5814

\[ {}{\mathrm e}^{x}-\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

5815

\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

5816

\[ {}y^{3}+x y^{2}+y+\left (x^{3}+x^{2} y+x \right ) y^{\prime } = 0 \]

5817

\[ {}3 y-x y^{\prime } = 0 \]

5818

\[ {}y-3 x y^{\prime } = 0 \]

5819

\[ {}y \left (2 x^{2} y^{3}+3\right )+x \left (x^{2} y^{3}-1\right ) y^{\prime } = 0 \]

5820

\[ {}2 x y+x^{2}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

5821

\[ {}x^{2}+y \cos \left (x \right )+\left (y^{3}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

5822

\[ {}x^{2}+y^{2}+x +x y y^{\prime } = 0 \]

5823

\[ {}x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

5824

\[ {}{\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{-y}-\left (x \,{\mathrm e}^{-y}-{\mathrm e}^{x} \cos \left (y\right )\right ) y^{\prime } = 0 \]

5825

\[ {}x^{2}-y^{2}-y-\left (x^{2}-y^{2}-x \right ) y^{\prime } = 0 \]

5826

\[ {}y^{2} x^{4}-y+\left (x^{2} y^{4}-x \right ) y^{\prime } = 0 \]

5827

\[ {}y \left (2 x +y^{3}\right )-x \left (2 x -y^{3}\right ) y^{\prime } = 0 \]

5828

\[ {}\arctan \left (x y\right )+\frac {x y-2 x y^{2}}{1+x^{2} y^{2}}+\frac {\left (x^{2}-2 x^{2} y\right ) y^{\prime }}{1+x^{2} y^{2}} = 0 \]

5829

\[ {}{\mathrm e}^{x} \left (1+x \right )+\left (y \,{\mathrm e}^{y}-x \,{\mathrm e}^{x}\right ) y^{\prime } = 0 \]

5830

\[ {}\frac {x y+1}{y}+\frac {\left (-x +2 y\right ) y^{\prime }}{y^{2}} = 0 \]

5831

\[ {}y^{2}-3 x y-2 x^{2}+\left (x y-x^{2}\right ) y^{\prime } = 0 \]

5832

\[ {}\left (2 x +y+1\right ) y-x \left (x +2 y-1\right ) y^{\prime } = 0 \]

5833

\[ {}y \left (2 x -y-1\right )+x \left (2 y-x -1\right ) y^{\prime } = 0 \]

5834

\[ {}y^{2}+12 x^{2} y+\left (2 x y+4 x^{3}\right ) y^{\prime } = 0 \]

5835

\[ {}3 \left (x +y\right )^{2}+x \left (2 x +3 y\right ) y^{\prime } = 0 \]

5836

\[ {}y-\left (x +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

5837

\[ {}2 x y+\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

5838

\[ {}2 x y+x^{2}+b +\left (a +x^{2}+y^{2}\right ) y^{\prime } = 0 \]

5839

\[ {}x y^{\prime }+y = x^{3} \]

5840

\[ {}y^{\prime }+a y = b \]

5841

\[ {}x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

5842

\[ {}x^{\prime }+2 x y = {\mathrm e}^{-y^{2}} \]

5843

\[ {}r^{\prime } = \left (r+{\mathrm e}^{-\theta }\right ) \tan \left (\theta \right ) \]

5844

\[ {}y^{\prime }-\frac {2 x y}{x^{2}+1} = 1 \]

5845

\[ {}y^{\prime }+y = x y^{3} \]

5846

\[ {}\left (-x^{3}+1\right ) y^{\prime }-2 \left (1+x \right ) y = y^{{5}/{2}} \]

5847

\[ {}\tan \left (\theta \right ) r^{\prime }-r = \tan \left (\theta \right )^{2} \]

5848

\[ {}y^{\prime }+2 y = 3 \,{\mathrm e}^{-2 x} \]

5849

\[ {}y^{\prime }+2 y = \frac {3 \,{\mathrm e}^{-2 x}}{4} \]

5850

\[ {}y^{\prime }+2 y = \sin \left (x \right ) \]

5851

\[ {}y^{\prime }+y \cos \left (x \right ) = {\mathrm e}^{2 x} \]

5852

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

5853

\[ {}x y^{\prime }+y = x \sin \left (x \right ) \]

5854

\[ {}x y^{\prime }-y = x^{2} \sin \left (x \right ) \]

5855

\[ {}x y^{\prime }+x y^{2}-y = 0 \]

5856

\[ {}x y^{\prime }-y \left (-1+2 y \ln \left (x \right )\right ) = 0 \]

5857

\[ {}x^{2} \left (x -1\right ) y^{\prime }-y^{2}-x \left (x -2\right ) y = 0 \]

5858

\[ {}y^{\prime }-y = {\mathrm e}^{x} \]

5859

\[ {}y^{\prime }+\frac {y}{x} = \frac {y^{2}}{x} \]

5860

\[ {}2 \cos \left (x \right ) y^{\prime } = y \sin \left (x \right )-y^{3} \]

5861

\[ {}\left (x -\cos \left (y\right )\right ) y^{\prime }+\tan \left (y\right ) = 0 \]

5862

\[ {}y^{\prime } = x^{3}+\frac {2 y}{x}-\frac {y^{2}}{x} \]

5863

\[ {}y^{\prime } = 2 \tan \left (x \right ) \sec \left (x \right )-y^{2} \sin \left (x \right ) \]

5864

\[ {}y^{\prime } = \frac {1}{x^{2}}-\frac {y}{x}-y^{2} \]

5865

\[ {}y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

5866

\[ {}2 x y y^{\prime }+\left (1+x \right ) y^{2} = {\mathrm e}^{x} \]

5867

\[ {}\cos \left (y\right ) y^{\prime }+\sin \left (y\right ) = x^{2} \]

5868

\[ {}\left (1+x \right ) y^{\prime }-1-y = \left (1+x \right ) \sqrt {1+y} \]

5869

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = {\mathrm e}^{x} \]

5870

\[ {}y^{\prime } \sin \left (y\right )+\sin \left (x \right ) \cos \left (y\right ) = \sin \left (x \right ) \]

5871

\[ {}\left (x -y\right )^{2} y^{\prime } = 4 \]

5872

\[ {}x y^{\prime }-y = \sqrt {x^{2}+y^{2}} \]