5.3.72 Problems 7101 to 7200

Table 5.189: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

23552

\[ {} y^{\prime \prime \prime \prime }-\ln \left (1+x \right ) y = 0 \]

23556

\[ {} y^{\prime \prime \prime }-3 x^{2} y^{\prime }+2 x y = 0 \]

23557

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+2 y^{\prime }-x^{3} y = 0 \]

23562

\[ {} y^{\prime \prime \prime }+y = 0 \]

23563

\[ {} \left (x^{2}+2\right ) y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

23567

\[ {} y^{\prime \prime \prime }-2 x y = 0 \]

23584

\[ {} x y^{\prime \prime }-2 y^{\prime }+\frac {\left (x^{2}+2\right ) y}{x} = 4+\tan \left (x \right ) \]

23585

\[ {} 3 x y^{\prime \prime \prime }-4 x y = \cos \left (y\right ) \]

23588

\[ {} y^{\prime \prime \prime }-3 x y^{\prime \prime }+4 y = x^{2} \]

23590

\[ {} 3 x y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = 3 \cos \left (x \right ) \]

23653

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \]

23665

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \]

23667

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = \left (x^{2}+1\right )^{2} \]

23669

\[ {} x \left (1-2 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+4 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (4 x +2\right ) y = {\mathrm e}^{2 x} \left (1-2 x \ln \left (x \right )\right )^{2} \]

23670

\[ {} x^{\prime \prime }+2 x^{\prime }+x = -\frac {{\mathrm e}^{-t}}{\left (t +1\right )^{2}} \]

23737

\[ {} [x^{\prime }\left (t \right ) = -10 x \left (t \right )+y \left (t \right )+7 z \left (t \right ), y^{\prime }\left (t \right ) = -9 x \left (t \right )+4 y \left (t \right )+5 z \left (t \right ), z^{\prime }\left (t \right ) = -17 x \left (t \right )+y \left (t \right )+12 z \left (t \right )] \]

23759

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 24 \cosh \left (t \right ) \]

23761

\[ {} y^{\prime \prime \prime }-y = -1 \]

23762

\[ {} y^{\prime \prime \prime }+y = -1 \]

23772

\[ {} y^{\prime \prime \prime }-y = 12 \sinh \left (t \right ) \]

23789

\[ {} x^{3} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }+x y = 0 \]

23794

\[ {} -b y a +\left (c -\left (1+a +b \right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0 \]

23799

\[ {} x^{2} y^{\prime \prime }+\left (1-x \right ) y^{\prime }+2 y = 0 \]

23801

\[ {} x^{3} y^{\prime \prime }-\left (1+x \right ) y = 0 \]

23841

\[ {} x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+\frac {y}{16} = 0 \]

23846

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-p^{2}+x^{2}\right ) y = 0 \]

23870

\[ {} y^{\prime \prime }+9 y = 0 \]

23873

\[ {} y^{\prime \prime }+9 y = 0 \]

23879

\[ {} -\frac {u^{\prime \prime }}{2} = x \]

23880

\[ {} -\frac {u^{\prime \prime }}{2} = x \]

23891

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )^{2}-x \left (t \right )^{2}, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )] \]

23892

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -\sin \left (x \left (t \right )\right )] \]

23893

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -4 \sin \left (x \left (t \right )\right )] \]

23894

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+x \left (t \right ) y \left (t \right )] \]

23896

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = \sin \left (x_{1} \left (t \right )\right )] \]

23898

\[ {} [x_{1}^{\prime }\left (t \right ) = x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{1} \left (t \right )^{3}] \]

23912

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-6 y \left (t \right )+x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )-7 y \left (t \right )-x \left (t \right ) y \left (t \right )] \]

23913

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{2}, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+\left (x \left (t \right )^{2}-y \left (t \right )^{2}\right )^{5}] \]

23914

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right )+x \left (t \right )^{2}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )+y \left (t \right )^{2}] \]

23915

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+x \left (t \right ) y \left (t \right )] \]

23916

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-x \left (t \right )^{2}+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = -y \left (t \right )+2 x \left (t \right ) y \left (t \right )] \]

23931

\[ {} [x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-x \left (t \right )^{2}+2 y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+x \left (t \right )^{2} y \left (t \right )^{2}] \]

23933

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+\left (x \left (t \right )^{2}+y \left (t \right )^{2}\right )^{2}] \]

23934

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 3 y \left (t \right )-x \left (t \right )^{2}] \]

23935

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+x \left (t \right ) y \left (t \right )] \]

23951

\[ {} y^{\prime } = x^{2}+y^{2} \]

23954

\[ {} y^{\prime } = 1-\frac {y^{2}}{x} \]

23962

\[ {} x y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+\left (x +2\right ) y = 1 \]

23976

\[ {} 2 x^{3} y+\left (2 x^{2} y^{2}+2 y^{4}+\ln \left (y\right )\right ) y^{\prime } = 0 \]

23978

\[ {} y+x y^{2}-\left (x +2 x^{2} y\right ) y^{\prime } = 0 \]

23979

\[ {} x \left (\left (x^{2}+y^{2}\right )^{{3}/{2}}+2 y^{2}\right )+y \left (\left (x^{2}+y^{2}\right )^{{3}/{2}}-2 x^{2}\right ) y^{\prime } = 0 \]

23980

\[ {} x \left (6 x^{2}+14 y^{2}\right )+y \left (13 x^{2}+30 y^{2}\right ) y^{\prime } = 0 \]

23984

\[ {} y^{\prime } = \frac {x y+3}{5 x -y} \]

23987

\[ {} y^{\prime } = \frac {2 x y+3 y}{x^{2}+2 y^{2}} \]

23989

\[ {} y^{\prime } = \frac {x^{2} {\mathrm e}^{\frac {y}{x}}+y^{2}}{x y} \]

23990

\[ {} y^{\prime } = \frac {x^{3}+x^{2} y-y^{3}}{x^{3}-x y^{2}} \]

23994

\[ {} y^{\prime } = \frac {2 y^{3}+2 x^{2} y}{x^{3}+2 x y^{2}} \]

23996

\[ {} x^{2} y-2 x +\left (y^{2}+\frac {x^{3}}{3}\right ) y^{\prime } = 0 \]

23997

\[ {} 3 x^{2} y^{2}-4 y+\left (3 y^{2}-4 x +2 x^{3} y\right ) y^{\prime } = 0 \]

23998

\[ {} 3 y^{2}+y \sin \left (2 x y\right )+\left (6 x y+x \sin \left (2 x y\right )\right ) y^{\prime } = 0 \]

24000

\[ {} \frac {2 x}{y}+5 y^{2}-4 x +\left (3 y^{2}-\frac {x^{2}}{y^{2}}+10 x y\right ) y^{\prime } = 0 \]

24001

\[ {} \sec \left (x -2 y\right )^{2}+\cos \left (3 y+x \right )-3 \sin \left (3 x \right )+\left (3 \cos \left (3 y+x \right )-2 \sec \left (x -2 y\right )^{2}\right ) y^{\prime } = 0 \]

24002

\[ {} 3 x^{2} {\mathrm e}^{x^{3}}+{\mathrm e}^{2 y}+\left (2 x \,{\mathrm e}^{2 y}-3\right ) y^{\prime } = 0 \]

24003

\[ {} \frac {1-6 x^{2} y}{x}+\frac {\left (2+5 y-3 x^{2} y\right ) y^{\prime }}{y} = 0 \]

24004

\[ {} \frac {8 x^{4} y+12 y^{2} x^{3}+2}{2 x +3 y}+\frac {\left (2 x^{5}+3 x^{4} y+3\right ) y^{\prime }}{x^{2} y^{4}+1} = 0 \]

24005

\[ {} \frac {y^{5} x^{2}+y^{2}+y}{x^{2} y^{4}+1}+\frac {\left (y^{4} x^{3}+2 x y+x \right ) y^{\prime }}{x^{2} y^{4}+1} = 0 \]

24007

\[ {} 2 x^{2} y-y^{2}+6 x^{3} y^{3}+\left (2 x^{4} y^{2}-x^{3}\right ) y^{\prime } = 0 \]

24013

\[ {} y+6 x y^{3}-4 y^{4}-\left (2 x +4 x y^{3}\right ) y^{\prime } = 0 \]

24014

\[ {} 2 x y^{2}+2 x +\left (6 y^{3}+2 y+4 x^{2} y\right ) y^{\prime } = 0 \]

24016

\[ {} 2 x +2 x y^{2}-y^{3}-y^{5}+\left (1-3 x y^{2}-3 x y^{4}\right ) y^{\prime } = 0 \]

24017

\[ {} x^{2} y+\left (x^{2}-y^{2}\right ) y^{\prime } = 0 \]

24019

\[ {} y+2 x^{3}+\left (2 x -\frac {x^{4}}{y}\right ) y^{\prime } = 0 \]

24020

\[ {} x^{3}+y^{2}+\left (x y-3 x^{2}\right ) y^{\prime } = 0 \]

24040

\[ {} 3 y y^{\prime }+y^{\prime \prime } = 0 \]

24041

\[ {} y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

24051

\[ {} [y \left (x \right ) y^{\prime }\left (x \right ) = -x, y \left (x \right ) z^{\prime }\left (x \right ) = 2] \]

24058

\[ {} y \cos \left (x y\right )+y-x +\left (x \cos \left (x y\right )+x -y\right ) y^{\prime } = 0 \]

24065

\[ {} {\mathrm e}^{x} \cos \left (y\right )+x -\left ({\mathrm e}^{x} \sin \left (y\right )+y\right ) y^{\prime } = 0 \]

24069

\[ {} \left (x +\frac {x}{x^{2}+y^{2}}\right ) y^{\prime }+y-\frac {y}{x^{2}+y^{2}} = 0 \]

24074

\[ {} x^{2} y+2 y^{3}-\left (2 x^{3}+3 x y^{2}\right ) y^{\prime } = 0 \]

24082

\[ {} \left (2+3 y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

24118

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (x \right ) \]

24144

\[ {} y^{\left (8\right )}+y = x^{15} \]

24148

\[ {} y^{\left (8\right )}+8 y^{\left (7\right )}+28 y^{\left (6\right )}+56 y^{\left (5\right )}+70 y^{\prime \prime \prime \prime }+56 y^{\prime \prime \prime }+28 y^{\prime \prime }+8 y^{\prime } = {\mathrm e}^{-x} x^{9} \]

24153

\[ {} x \left (1+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = 0 \]

24154

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-x y = 0 \]

24156

\[ {} y^{\prime \prime }+x y^{\prime }+\left (3 x -9\right ) y = 0 \]

24158

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-x y = 2 x \]

24159

\[ {} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y = 0 \]

24160

\[ {} x \left (x -1\right ) y^{\prime \prime }+\left (-x^{2}+2 x +1\right ) y^{\prime }-\left (1+x \right ) y = 0 \]

24168

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = \cosh \left (2 x \right ) \]

24180

\[ {} y^{\left (10\right )}+y = x^{10} \]

24184

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \]

24193

\[ {} x^{2} y^{\prime \prime }+a x y^{\prime }+b y = f \left (x \right ) \]

24204

\[ {} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 y = 0 \]

24205

\[ {} \left (-x^{4}+1\right ) y^{\prime \prime \prime }-24 x y = 0 \]

24208

\[ {} x^{2} y^{\prime \prime \prime }-y^{\prime }+y = 0 \]

24209

\[ {} x^{4} y^{\prime \prime \prime }+\frac {x^{2} y^{\prime \prime }}{1+x}-\left (1+x \right ) y = 0 \]

24210

\[ {} x^{4} y^{\prime \prime \prime }-\frac {x^{2} y^{\prime }}{1+x}+y = 0 \]

24211

\[ {} x^{2} y^{\prime \prime }+y^{\prime } \sin \left (x \right )-2 y = 0 \]