2.4.21 second order kovacic

Table 2.491: second order kovacic

#

ODE

CAS classification

Solved?

11

\[ {}x^{\prime \prime } = 50 \]
i.c.

[[_2nd_order, _quadrature]]

12

\[ {}x^{\prime \prime } = -20 \]
i.c.

[[_2nd_order, _quadrature]]

13

\[ {}x^{\prime \prime } = 3 t \]
i.c.

[[_2nd_order, _quadrature]]

14

\[ {}x^{\prime \prime } = 2 t +1 \]
i.c.

[[_2nd_order, _quadrature]]

15

\[ {}x^{\prime \prime } = 4 \left (t +3\right )^{2} \]
i.c.

[[_2nd_order, _quadrature]]

16

\[ {}x^{\prime \prime } = \frac {1}{\sqrt {t +4}} \]
i.c.

[[_2nd_order, _quadrature]]

17

\[ {}x^{\prime \prime } = \frac {1}{\left (1+t \right )^{3}} \]
i.c.

[[_2nd_order, _quadrature]]

18

\[ {}x^{\prime \prime } = 50 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _quadrature]]

147

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

149

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

150

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

152

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

215

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

216

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

217

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

218

\[ {}y^{\prime \prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

219

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

220

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

221

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

222

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

223

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

224

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

225

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

226

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

227

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

228

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

229

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

230

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

234

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

235

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

236

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

237

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

238

\[ {}2 y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

239

\[ {}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

240

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

241

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

242

\[ {}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0 \]

[[_2nd_order, _missing_x]]

243

\[ {}35 y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

244

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

245

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

246

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

247

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

248

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

257

\[ {}y^{\prime \prime }+y = 3 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

258

\[ {}y^{\prime \prime }-4 y = 12 \]
i.c.

[[_2nd_order, _missing_x]]

259

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

260

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 2 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

261

\[ {}y^{\prime \prime }+2 y = 6 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

262

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

263

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

271

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

272

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

273

\[ {}y^{\prime \prime }+y^{\prime }-10 y = 0 \]

[[_2nd_order, _missing_x]]

274

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

275

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

276

\[ {}y^{\prime \prime }+5 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

277

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

278

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

279

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

291

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

292

\[ {}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

293

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

309

\[ {}y^{\prime \prime }+2 i y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

310

\[ {}y^{\prime \prime }-i y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

311

\[ {}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y \]

[[_2nd_order, _missing_x]]

315

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

316

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

322

\[ {}y^{\prime \prime }+16 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

323

\[ {}y^{\prime \prime }-y^{\prime }+2 y = 3 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

324

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

325

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 3 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

326

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

327

\[ {}2 y^{\prime \prime }+4 y^{\prime }+7 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

328

\[ {}y^{\prime \prime }-4 y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

329

\[ {}y^{\prime \prime }-4 y = \cosh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

330

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 1+x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

331

\[ {}2 y^{\prime \prime }+9 y = 2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

334

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

337

\[ {}y^{\prime \prime }+9 y = 2 x^{2} {\mathrm e}^{3 x}+5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

338

\[ {}y^{\prime \prime }+y = \sin \left (x \right )+x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

342

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

344

\[ {}y^{\prime \prime }+4 y = 3 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

346

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

347

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = x \,{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

351

\[ {}y^{\prime \prime }+4 y = 2 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

352

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

353

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

354

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

355

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x +1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

358

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \sin \left (3 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

363

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

364

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

365

\[ {}y^{\prime \prime }+y = x \cos \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

366

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

367

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 3 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

368

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

369

\[ {}y^{\prime \prime }-4 y = \sinh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

370

\[ {}y^{\prime \prime }+4 y = \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

371

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

372

\[ {}y^{\prime \prime }+9 y = 2 \sec \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

373

\[ {}y^{\prime \prime }+y = \csc \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

374

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

375

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

376

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

377

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

378

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

379

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}} \]

[[_2nd_order, _with_linear_symmetries]]

380

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

381

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

382

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

383

\[ {}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

384

\[ {}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

385

\[ {}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

386

\[ {}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

387

\[ {}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

388

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

389

\[ {}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

390

\[ {}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

391

\[ {}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

392

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

393

\[ {}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

394

\[ {}x^{\prime \prime }+2 x^{\prime }+26 x = 600 \cos \left (10 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

395

\[ {}x^{\prime \prime }+8 x^{\prime }+25 x = 200 \cos \left (t \right )+520 \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

396

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 2 \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

397

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

398

\[ {}x^{\prime \prime }+6 x^{\prime }+45 x = 50 \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

399

\[ {}x^{\prime \prime }+10 x^{\prime }+650 x = 100 \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

516

\[ {}x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

522

\[ {}16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

526

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

807

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

808

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

809

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

810

\[ {}y^{\prime \prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

811

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

812

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

813

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

814

\[ {}y^{\prime \prime }-3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

815

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

816

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

817

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

818

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

819

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

820

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

821

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

822

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

823

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

824

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

825

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

826

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

827

\[ {}2 y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

828

\[ {}4 y^{\prime \prime }+8 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

829

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

830

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

831

\[ {}6 y^{\prime \prime }-7 y^{\prime }-20 y = 0 \]

[[_2nd_order, _missing_x]]

832

\[ {}35 y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

833

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

834

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

835

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

836

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

837

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

838

\[ {}y^{\prime \prime }+y = 3 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

839

\[ {}y^{\prime \prime }-4 y = 12 \]
i.c.

[[_2nd_order, _missing_x]]

840

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

841

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 2 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

842

\[ {}y^{\prime \prime }+2 y = 4 \]

[[_2nd_order, _missing_x]]

843

\[ {}y^{\prime \prime }+2 y = 6 x \]

[[_2nd_order, _with_linear_symmetries]]

844

\[ {}y^{\prime \prime }+2 y = 6 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

845

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

846

\[ {}2 y^{\prime \prime }-3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

847

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 0 \]

[[_2nd_order, _missing_x]]

848

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

849

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

850

\[ {}y^{\prime \prime }+5 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

851

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

852

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

853

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

854

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

855

\[ {}9 y^{\prime \prime }+6 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

856

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

857

\[ {}y^{\prime \prime }-2 i y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

858

\[ {}y^{\prime \prime }-i y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

859

\[ {}y^{\prime \prime } = \left (-2+2 i \sqrt {3}\right ) y \]

[[_2nd_order, _missing_x]]

860

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

861

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

862

\[ {}\frac {x^{\prime \prime }}{2}+3 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

863

\[ {}3 x^{\prime \prime }+30 x^{\prime }+63 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

864

\[ {}x^{\prime \prime }+8 x^{\prime }+16 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

865

\[ {}2 x^{\prime \prime }+12 x^{\prime }+50 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

866

\[ {}4 x^{\prime \prime }+20 x^{\prime }+169 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

867

\[ {}2 x^{\prime \prime }+16 x^{\prime }+40 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

868

\[ {}x^{\prime \prime }+10 x^{\prime }+125 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

869

\[ {}y^{\prime \prime }+16 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

870

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 3 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

871

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 2 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

872

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 3 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

873

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

874

\[ {}2 y^{\prime \prime }+4 y^{\prime }+7 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

875

\[ {}y^{\prime \prime }-4 y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

876

\[ {}y^{\prime \prime }-4 y = \cosh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

877

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 1+x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

878

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 x \right )+3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

879

\[ {}y^{\prime \prime }+9 y = 2 x^{2} {\mathrm e}^{3 x}+5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

880

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

881

\[ {}y^{\prime \prime }+4 y = 3 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

882

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \left ({\mathrm e}^{-x}-{\mathrm e}^{-2 x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

883

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = x \,{\mathrm e}^{3 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

884

\[ {}y^{\prime \prime }+4 y = 2 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

885

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

886

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

887

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

888

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x +1 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

889

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

890

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

891

\[ {}y^{\prime \prime }+y = x \cos \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

892

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

893

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 3 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

894

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

895

\[ {}y^{\prime \prime }-4 y = \sinh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

896

\[ {}y^{\prime \prime }+4 y = \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

897

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

898

\[ {}y^{\prime \prime }+9 y = 2 \sec \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

899

\[ {}y^{\prime \prime }+y = \csc \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

900

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

901

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

902

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 72 x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

903

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

904

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

905

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 8 x^{{4}/{3}} \]

[[_2nd_order, _with_linear_symmetries]]

906

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

907

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

908

\[ {}x^{\prime \prime }+9 x = 10 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

909

\[ {}x^{\prime \prime }+4 x = 5 \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

910

\[ {}x^{\prime \prime }+100 x = 225 \cos \left (5 t \right )+300 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

911

\[ {}x^{\prime \prime }+25 x = 90 \cos \left (4 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

912

\[ {}m x^{\prime \prime }+k x = F_{0} \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

913

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = 10 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

914

\[ {}x^{\prime \prime }+3 x^{\prime }+5 x = -4 \cos \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

915

\[ {}2 x^{\prime \prime }+2 x^{\prime }+x = 3 \sin \left (10 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

916

\[ {}x^{\prime \prime }+3 x^{\prime }+3 x = 8 \cos \left (10 t \right )+6 \sin \left (10 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

917

\[ {}x^{\prime \prime }+4 x^{\prime }+5 x = 10 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

918

\[ {}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

919

\[ {}x^{\prime \prime }+6 x^{\prime }+13 x = 10 \sin \left (5 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

920

\[ {}x^{\prime \prime }+2 x^{\prime }+26 x = 600 \cos \left (10 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

921

\[ {}x^{\prime \prime }+8 x^{\prime }+25 x = 200 \cos \left (t \right )+520 \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1249

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1250

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1251

\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1252

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1253

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1254

\[ {}4 y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

1255

\[ {}y^{\prime \prime }-9 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1256

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

1257

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1258

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1259

\[ {}6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1260

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1261

\[ {}y^{\prime \prime }+5 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1262

\[ {}2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1263

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1264

\[ {}4 y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1265

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1266

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1267

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1268

\[ {}4 y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1269

\[ {}y^{\prime \prime }-\left (2 \alpha -1\right ) y^{\prime }+\alpha \left (\alpha -1\right ) y = 0 \]

[[_2nd_order, _missing_x]]

1270

\[ {}y^{\prime \prime }+\left (3-\alpha \right ) y^{\prime }-2 \left (\alpha -1\right ) y = 0 \]

[[_2nd_order, _missing_x]]

1271

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1272

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1273

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1274

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

1275

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

1276

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

1277

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

1278

\[ {}4 y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1279

\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

1280

\[ {}9 y^{\prime \prime }+9 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

1281

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

1282

\[ {}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

1283

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1284

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1285

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1286

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1287

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1288

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1289

\[ {}u^{\prime \prime }-u^{\prime }+2 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1290

\[ {}5 u^{\prime \prime }+2 u^{\prime }+7 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1291

\[ {}y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1292

\[ {}y^{\prime \prime }+2 a y^{\prime }+\left (a^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1293

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1294

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1295

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+\frac {5 y}{4} = 0 \]

[[_Emden, _Fowler]]

1296

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1297

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1298

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1299

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

1300

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+10 y = 0 \]

[[_Emden, _Fowler]]

1302

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1303

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1304

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1305

\[ {}4 y^{\prime \prime }-4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1306

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1307

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

1308

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1309

\[ {}4 y^{\prime \prime }+17 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1310

\[ {}16 y^{\prime \prime }+24 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1311

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

1312

\[ {}2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1313

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1314

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1315

\[ {}9 y^{\prime \prime }+6 y^{\prime }+82 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1316

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1317

\[ {}4 y^{\prime \prime }+12 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1318

\[ {}y^{\prime \prime }-y^{\prime }+\frac {y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1327

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1328

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4} = 0 \]

[[_Emden, _Fowler]]

1329

\[ {}2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

1330

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1331

\[ {}4 t^{2} y^{\prime \prime }-8 t y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

1332

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }+13 y = 0 \]

[[_Emden, _Fowler]]

1333

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

1334

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1335

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1336

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1337

\[ {}y^{\prime \prime }+y = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1338

\[ {}y^{\prime \prime }+9 y = 9 \sec \left (3 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1339

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 t}}{t^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1340

\[ {}y^{\prime \prime }+4 y = 3 \csc \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1341

\[ {}y^{\prime \prime }+y = 2 \sec \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1342

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1343

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1344

\[ {}y^{\prime \prime }+4 y = g \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1345

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1346

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3} \]

[[_2nd_order, _with_linear_symmetries]]

1347

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

1348

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1349

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1350

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1351

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1352

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1353

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

1354

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right ) {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

1355

\[ {}u^{\prime \prime }+2 u = 0 \]

[[_2nd_order, _missing_x]]

1356

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+2 u = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1357

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (\frac {t}{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1358

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1359

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{8}+4 u = 3 \cos \left (6 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1517

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1737

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1738

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1739

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1740

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1741

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1742

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1743

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

1744

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1745

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1746

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1747

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

1748

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = 0 \]

[[_Emden, _Fowler]]

1749

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1750

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1751

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1754

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1756

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1805

\[ {}y^{\prime \prime }+9 y = \tan \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1806

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \sec \left (2 x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1807

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {4}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1808

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 3 \,{\mathrm e}^{x} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1809

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 14 x^{{3}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1810

\[ {}y^{\prime \prime }-y = \frac {4 \,{\mathrm e}^{-x}}{1-{\mathrm e}^{-2 x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1811

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 2 x^{2}+2 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1812

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1813

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1814

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 4 \,{\mathrm e}^{-x \left (x +2\right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1815

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{{5}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

1816

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{4} \sin \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

1817

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = \left (2 x +1\right )^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1819

\[ {}x y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1820

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = x^{a +1} \]

[[_2nd_order, _with_linear_symmetries]]

1821

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = x^{3} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

1822

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1824

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 8 x^{{5}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1825

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y = x^{{7}/{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1826

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y = 3 x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1827

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1828

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = x^{{3}/{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1829

\[ {}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+2 \left (x +3\right ) y = x^{4} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1830

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 2 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1831

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1832

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 2 \left (x -1\right )^{2} {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

1833

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = x^{{5}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1834

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y = \left (3 x -1\right )^{2} {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

1835

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = \left (x -1\right )^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1836

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (x +1\right ) y = \left (x -1\right )^{3} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1837

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 2 x \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

1838

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = -2 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

1839

\[ {}\left (x +1\right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = \left (2 x +3\right )^{2} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2362

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2363

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2364

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2365

\[ {}6 y^{\prime \prime }-7 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2366

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2367

\[ {}3 y^{\prime \prime }+6 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2368

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2369

\[ {}2 y^{\prime \prime }+y^{\prime }-10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2370

\[ {}5 y^{\prime \prime }+5 y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2371

\[ {}y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2372

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2373

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

[[_Emden, _Fowler]]

2374

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

2375

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2376

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2377

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2378

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

2379

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2380

\[ {}4 y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2381

\[ {}y^{\prime \prime }+y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2382

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2383

\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2384

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2385

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2386

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

2387

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2388

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2389

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2390

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2391

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2392

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2393

\[ {}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2394

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2395

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[_Gegenbauer]

2396

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2397

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

[_Gegenbauer]

2398

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2399

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2400

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2401

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2402

\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2403

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2404

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2405

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2406

\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2407

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2408

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {1+t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2409

\[ {}y^{\prime \prime }-y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2411

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

[[_2nd_order, _with_linear_symmetries]]

2412

\[ {}m y^{\prime \prime }+c y^{\prime }+k y = F_{0} \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2431

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y = 0 \]

[[_Emden, _Fowler]]

2432

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

2433

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2434

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2435

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2436

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2437

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2438

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2439

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2440

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2543

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2544

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

2545

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

2546

\[ {}6 y^{\prime \prime }-7 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2547

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2548

\[ {}3 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

2549

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2550

\[ {}2 y^{\prime \prime }+y^{\prime }-10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2551

\[ {}5 y^{\prime \prime }+5 y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2552

\[ {}y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2553

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2554

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

[[_Emden, _Fowler]]

2555

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2556

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2557

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

2558

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

2559

\[ {}4 y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

2560

\[ {}y^{\prime \prime }+y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2561

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2562

\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2563

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2564

\[ {}y^{\prime \prime }+w^{2} y = 0 \]

[[_2nd_order, _missing_x]]

2565

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2566

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

2567

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2568

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2569

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2570

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2571

\[ {}6 y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2572

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2581

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2582

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2583

\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2584

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2585

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2586

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2587

\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2588

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2589

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {1+t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2590

\[ {}y^{\prime \prime }-y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2591

\[ {}t^{2} y^{\prime \prime }-2 y = t^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

2593

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

[[_2nd_order, _with_linear_symmetries]]

2594

\[ {}y^{\prime \prime }+3 y = t^{3}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2595

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t \,{\mathrm e}^{\alpha t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2596

\[ {}y^{\prime \prime }-y = t^{2} {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2597

\[ {}y^{\prime \prime }+y^{\prime }+y = t^{2}+t +1 \]

[[_2nd_order, _with_linear_symmetries]]

2598

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

2599

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = t^{2} {\mathrm e}^{7 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2600

\[ {}y^{\prime \prime }+4 y = t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2601

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = \left (3 t^{7}-5 t^{4}\right ) {\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2602

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \cos \left (t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2603

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2 \cos \left (t \right )^{2} {\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2604

\[ {}y^{\prime \prime }+y^{\prime }-6 y = \sin \left (t \right )+t \,{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2605

\[ {}y^{\prime \prime }+y^{\prime }+4 y = t^{2}+\left (2 t +3\right ) \left (1+\cos \left (t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2606

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{t}+{\mathrm e}^{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2607

\[ {}y^{\prime \prime }+2 y^{\prime } = 1+t^{2}+{\mathrm e}^{-2 t} \]

[[_2nd_order, _missing_y]]

2608

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2609

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \cos \left (2 t \right ) \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2610

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = t^{{3}/{2}} {\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2628

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

[[_Emden, _Fowler]]

2629

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2630

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2631

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

2632

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

2633

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2634

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2635

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

2636

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2637

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2835

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2836

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2837

\[ {}y^{\prime \prime }-\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2838

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2839

\[ {}y^{\prime \prime }-2 y^{\prime }+\left (1+\lambda \right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2840

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3059

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

3060

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

3061

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

3062

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

3063

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

3064

\[ {}y^{\prime \prime }-2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

3065

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

3066

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

3067

\[ {}2 y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

3088

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

3089

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

3100

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

3111

\[ {}y^{\prime \prime }-4 y = 3 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3112

\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3113

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3114

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3115

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3116

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3117

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3119

\[ {}y^{\prime \prime }-4 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3120

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3121

\[ {}y^{\prime \prime }-y^{\prime }-6 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3122

\[ {}-2 y^{\prime \prime }+3 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3123

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3125

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3128

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3131

\[ {}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = 5 \cos \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3132

\[ {}y^{\prime \prime }+9 y = \left (1+\sin \left (3 x \right )\right ) \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3133

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 x -{\mathrm e}^{-4 x}+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3135

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3137

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3138

\[ {}y^{\prime \prime }+4 y = 12 \cos \left (x \right )^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3139

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3140

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3141

\[ {}2 y^{\prime \prime }+y^{\prime } = 8 \sin \left (2 x \right )+{\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

3142

\[ {}y^{\prime \prime }+y = 3 x \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3143

\[ {}2 y^{\prime \prime }+5 y^{\prime }-3 y = \sin \left (x \right )-8 x \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3144

\[ {}8 y^{\prime \prime }-y = x \,{\mathrm e}^{-\frac {x}{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3145

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3146

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3147

\[ {}y^{\prime \prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3148

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3149

\[ {}y^{\prime \prime }+y = 4 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3150

\[ {}y^{\prime \prime }+4 y = 2 x -2 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3151

\[ {}y^{\prime \prime }-y = 3 x +5 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3152

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{x}+\sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3155

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3156

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3160

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3161

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3162

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right ) \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3163

\[ {}y^{\prime \prime }-2 y = {\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3164

\[ {}y^{\prime \prime }+9 y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3165

\[ {}y^{\prime \prime }+9 y = \csc \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3166

\[ {}y^{\prime \prime }+y = \tan \left (\frac {x}{3}\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3168

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3170

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

3172

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3173

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3174

\[ {}y^{\prime \prime }+3 y = 3 \,{\mathrm e}^{-4 x} \]

[[_2nd_order, _with_linear_symmetries]]

3175

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3176

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3177

\[ {}y^{\prime \prime }+2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3178

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3179

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3180

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3184

\[ {}y^{\prime \prime }+y = {\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3185

\[ {}y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y = \sin \left (k x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3186

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3187

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3188

\[ {}y^{\prime \prime }+4 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3189

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3190

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}-8 \]

[[_2nd_order, _with_linear_symmetries]]

3205

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3206

\[ {}y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3207

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3210

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3214

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3215

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3216

\[ {}y^{\prime \prime }-y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3217

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

3218

\[ {}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3219

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3220

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

3221

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

3222

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3223

\[ {}4 x^{2} y^{\prime \prime }-16 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

3224

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

3225

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x -18 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

3226

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = \ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3227

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

3228

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 1-x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3230

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

3231

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3232

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +3 y = \left (x -1\right ) \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3244

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

[[_2nd_order, _quadrature]]

3245

\[ {}y^{\prime \prime } = k^{2} y \]

[[_2nd_order, _missing_x]]

3246

\[ {}x^{\prime \prime }+k^{2} x = 0 \]

[[_2nd_order, _missing_x]]

3249

\[ {}x y^{\prime \prime } = x^{2}+1 \]

[[_2nd_order, _quadrature]]

3250

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

3251

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

[[_2nd_order, _missing_y]]

3253

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

[[_2nd_order, _missing_y]]

3254

\[ {}x^{\prime \prime }+t x^{\prime } = t^{3} \]

[[_2nd_order, _missing_y]]

3255

\[ {}x^{2} y^{\prime \prime } = y^{\prime } x +1 \]

[[_2nd_order, _missing_y]]

3257

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

3266

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

3272

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3282

\[ {}x^{\prime \prime }-k^{2} x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3484

\[ {}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3485

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = 0 \]
i.c.

[[_2nd_order, _missing_x]]

3486

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = {\mathrm e}^{-t} \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3487

\[ {}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3488

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3489

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3490

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

3493

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

3494

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+3 \left (x +1\right ) y^{\prime }+y = x^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3495

\[ {}\left (x -2\right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3496

\[ {}y^{\prime \prime }-y = x^{n} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3497

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3500

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3558

\[ {}y^{\prime \prime }-25 y = 0 \]

[[_2nd_order, _missing_x]]

3559

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

3560

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

3563

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

3564

\[ {}y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

3565

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3566

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3567

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]

[[_Emden, _Fowler]]

3568

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 9 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

3569

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3570

\[ {}y^{\prime \prime }-\left (a +b \right ) y^{\prime }+a b y = 0 \]

[[_2nd_order, _missing_x]]

3571

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

3572

\[ {}y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _missing_x]]

3573

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

3574

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

3575

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3576

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

3584

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

3585

\[ {}y^{\prime \prime } = x^{n} \]

[[_2nd_order, _quadrature]]

3587

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

3589

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

3590

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

3591

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -8 y = 0 \]

[[_Emden, _Fowler]]

3592

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3631

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \]

[[_2nd_order, _missing_y]]

3696

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

3697

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

3698

\[ {}y^{\prime \prime }-36 y = 0 \]

[[_2nd_order, _missing_x]]

3699

\[ {}y^{\prime \prime }+4 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

3707

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3708

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

3711

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 18 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

3712

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 4 x^{2}+5 \]

[[_2nd_order, _with_linear_symmetries]]

3716

\[ {}y^{\prime \prime }+y = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3717

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3718

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3719

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3720

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3724

\[ {}y^{\prime \prime }+9 y = 5 \cos \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3725

\[ {}y^{\prime \prime }-y = 9 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3726

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -10 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3727

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 4 \cos \left (x \right )-2 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3728

\[ {}y^{\prime \prime }+\omega ^{2} y = \frac {F_{0} \cos \left (\omega t \right )}{m} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3729

\[ {}y^{\prime \prime }-4 y^{\prime }+6 y = 7 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3732

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3733

\[ {}y^{\prime \prime }+6 y = \sin \left (x \right )^{2} \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3734

\[ {}y^{\prime \prime }-16 y = 20 \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3735

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 50 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3736

\[ {}y^{\prime \prime }-y = 10 \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3737

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 169 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3738

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 40 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3739

\[ {}y^{\prime \prime }+y = 3 \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3740

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \,{\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3741

\[ {}y^{\prime \prime }-4 y = 100 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3742

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3743

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 24 \,{\mathrm e}^{x} \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3744

\[ {}y^{\prime \prime }+16 y = 34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3745

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 4 \,{\mathrm e}^{3 x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3746

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3747

\[ {}y^{\prime \prime }+9 y = 18 \sec \left (3 x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3748

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3749

\[ {}y^{\prime \prime }-4 y = \frac {8}{{\mathrm e}^{2 x}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3750

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3751

\[ {}y^{\prime \prime }+9 y = \frac {36}{4-\cos \left (3 x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3752

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = \frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3753

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3754

\[ {}y^{\prime \prime }+y = \sec \left (x \right )+4 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3755

\[ {}y^{\prime \prime }+y = \csc \left (x \right )+2 x^{2}+5 x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3756

\[ {}y^{\prime \prime }-y = 2 \tanh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3757

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \frac {{\mathrm e}^{m x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3758

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3759

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3760

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = \frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3761

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

3762

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3767

\[ {}y^{\prime \prime }-9 y = F \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3768

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = F \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3769

\[ {}y^{\prime \prime }+y^{\prime }-2 y = F \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3770

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = F \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3771

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3772

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3773

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3774

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

3775

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 9 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

3776

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 8 x \ln \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3777

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3778

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +6 y = 4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3779

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = \frac {x^{2}}{\ln \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3780

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3781

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

3782

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+25 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

3797

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

3798

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

3802

\[ {}y^{\prime \prime }-4 y = 5 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3803

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3804

\[ {}y^{\prime \prime }-y = 4 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3806

\[ {}y^{\prime \prime }+4 y = \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3807

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 5 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

3808

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3809

\[ {}y^{\prime \prime }+y = 4 \cos \left (2 x \right )+3 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4118

\[ {}y^{\prime \prime }+8 y^{\prime }+15 y = 0 \]

[[_2nd_order, _missing_x]]

4119

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

4120

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

4121

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

4122

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

4123

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

4124

\[ {}2 y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

4125

\[ {}y^{\prime \prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

4126

\[ {}4 y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

4127

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

4128

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

4129

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 1 \]

[[_2nd_order, _missing_x]]

4130

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

4131

\[ {}y^{\prime \prime }+y = x^{3}+x \]

[[_2nd_order, _linear, _nonhomogeneous]]

4132

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

4133

\[ {}y^{\prime \prime }+2 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

4134

\[ {}y^{\prime \prime }+2 y = {\mathrm e}^{x}+2 \]

[[_2nd_order, _with_linear_symmetries]]

4135

\[ {}y^{\prime \prime }-y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

4136

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4137

\[ {}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4138

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{3}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4139

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

4140

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x^{2}+2 \]

[[_2nd_order, _with_linear_symmetries]]

4141

\[ {}y^{\prime \prime }+2 n y^{\prime }+n^{2} y = A \cos \left (p x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4152

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4153

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = x^{2}+1 \]

[[_2nd_order, _with_linear_symmetries]]

4154

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{8} = \frac {\sin \left (x \right )}{8}-\frac {\cos \left (x \right )}{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4155

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x}-2 \,{\mathrm e}^{2 x}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4156

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x}+x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4157

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4158

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4161

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

4162

\[ {}y^{\prime \prime }+9 y = 8 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4163

\[ {}25 y^{\prime \prime }-30 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

4164

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = \left (4 x^{2}+24 x +18\right ) {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4426

\[ {}x y^{\prime \prime } = y^{\prime }+x \]

[[_2nd_order, _missing_y]]

4456

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 3 x \,{\mathrm e}^{-3 x}-2 \,{\mathrm e}^{3 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4457

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 x} \left (x^{2}-3 x \sin \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4458

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (x +{\mathrm e}^{x}\right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4459

\[ {}y^{\prime \prime }+4 y = \sinh \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4460

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cosh \left (x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4470

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 36 x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4474

\[ {}y^{\prime \prime }+3 y^{\prime }+5 y = 5 \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4476

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4479

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \left (x +1\right ) {\mathrm e}^{x}+2 \,{\mathrm e}^{2 x}+3 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4480

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 4 \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4481

\[ {}y^{\prime \prime }+4 y = 4 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4482

\[ {}y^{\prime \prime }-y = 12 x^{2} {\mathrm e}^{x}+3 \,{\mathrm e}^{2 x}+10 \cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4483

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )-3 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4484

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \left (x^{2}+10\right ) \]

[[_2nd_order, _missing_y]]

4485

\[ {}y^{\prime \prime }-4 y = 96 x^{2} {\mathrm e}^{2 x}+4 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4486

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (x \right )+10 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4487

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 4 x -2+2 \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4488

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x \,{\mathrm e}^{2 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4497

\[ {}y^{\prime \prime }-y = \frac {1}{x}-\frac {2}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4498

\[ {}y^{\prime \prime }-y = \frac {1}{\sinh \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4499

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4500

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4501

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4502

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4503

\[ {}y^{\prime \prime }-y = \frac {1}{\sqrt {1-{\mathrm e}^{2 x}}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4504

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4505

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 15 \,{\mathrm e}^{-x} \sqrt {x +1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4506

\[ {}y^{\prime \prime }+4 y = 2 \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4507

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{2 x}}{\left ({\mathrm e}^{x}+1\right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4508

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{{\mathrm e}^{x}+1} \]

[[_2nd_order, _missing_y]]

4509

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

4510

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = \frac {5 \ln \left (x \right )}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4512

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

5916

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

5917

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

5918

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

5919

\[ {}6 y^{\prime \prime }-11 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

5920

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

5925

\[ {}y^{\prime \prime }-2 k y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

5926

\[ {}y^{\prime \prime }+4 k y^{\prime }-12 k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

5928

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

5931

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

5937

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

5938

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

5940

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

5945

\[ {}y^{\prime \prime } = 0 \]
i.c.

[[_2nd_order, _quadrature]]

5946

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

5947

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

5948

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

5950

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 4 \]

[[_2nd_order, _missing_x]]

5951

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

5952

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{i x} \]

[[_2nd_order, _with_linear_symmetries]]

5953

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5954

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5955

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 8+6 \,{\mathrm e}^{x}+2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5956

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

5957

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 9 x \,{\mathrm e}^{x}+10 \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5958

\[ {}y^{\prime \prime }-3 y^{\prime } = 2 \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

5959

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+2 x \]

[[_2nd_order, _missing_y]]

5960

\[ {}y^{\prime \prime }+y^{\prime } = x +\sin \left (2 x \right ) \]

[[_2nd_order, _missing_y]]

5961

\[ {}y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5962

\[ {}y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5963

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5964

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-2 x}+x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5965

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5966

\[ {}y^{\prime \prime }+y^{\prime }-6 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

5967

\[ {}y^{\prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5968

\[ {}y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5969

\[ {}y^{\prime \prime }+y = \sin \left (2 x \right ) \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5970

\[ {}y^{\prime \prime }-5 y^{\prime }-6 y = {\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

5971

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5972

\[ {}y^{\prime \prime }+9 y = 8 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5973

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{x} \left (2 x -3\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

5974

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

5975

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5976

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5977

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5978

\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5979

\[ {}y^{\prime \prime }+y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5980

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

5981

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5982

\[ {}y^{\prime \prime }+y = 4 x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5983

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5984

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5985

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5986

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5987

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5988

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5989

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5990

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

5991

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5992

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

5993

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5994

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

5998

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

5999

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

6009

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

[[_2nd_order, _missing_y]]

6014

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]
i.c.

[[_2nd_order, _missing_y]]

6015

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

6026

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6077

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6078

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6079

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6080

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6081

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6082

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

6083

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

6084

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6085

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6086

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6087

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

6091

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

6135

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

6136

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

6137

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

6138

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

6139

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

6140

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

6141

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

6142

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

6143

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

6144

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

6145

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

[[_2nd_order, _missing_x]]

6146

\[ {}y^{\prime \prime }+\left (1+2 i\right ) y^{\prime }+\left (-1+i\right ) y = 0 \]

[[_2nd_order, _missing_x]]

6151

\[ {}y^{\prime \prime }-4 y^{\prime } = 10 \]

[[_2nd_order, _missing_x]]

6152

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 16 \]

[[_2nd_order, _missing_x]]

6153

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6154

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 24 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6155

\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

6156

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 12 \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

6157

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 3 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6158

\[ {}y^{\prime \prime }-16 y = 40 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

6159

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

6160

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6161

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 100 \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6162

\[ {}y^{\prime \prime }+4 y^{\prime }+12 y = 80 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6163

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6164

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 120 \sin \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6165

\[ {}5 y^{\prime \prime }+12 y^{\prime }+20 y = 120 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6166

\[ {}y^{\prime \prime }+9 y = 30 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6167

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6168

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = 60 \,{\mathrm e}^{-4 x} \sin \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6169

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 40 \,{\mathrm e}^{-\frac {3 x}{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6170

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = 30 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {5 x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6171

\[ {}5 y^{\prime \prime }+6 y^{\prime }+2 y = x^{2}+6 x \]

[[_2nd_order, _with_linear_symmetries]]

6172

\[ {}2 y^{\prime \prime }+y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

6173

\[ {}y^{\prime \prime }+y = 2 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6174

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 12 x \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6175

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 16 x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6176

\[ {}y^{\prime \prime }+y = 8 x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6177

\[ {}y^{\prime \prime }+y = x^{3}-1+2 \cos \left (x \right )+\left (2-4 x \right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6178

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{x}+6 x -5 \]

[[_2nd_order, _with_linear_symmetries]]

6179

\[ {}y^{\prime \prime }-y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6180

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right )+4 x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6181

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{x}+\left (1-x \right ) \left (-1+{\mathrm e}^{2 x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6182

\[ {}y^{\prime \prime }-2 y^{\prime } = 9 x \,{\mathrm e}^{-x}-6 x^{2}+4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

6187

\[ {}y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

6192

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = 0 \]

[[_Emden, _Fowler]]

6193

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6194

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

6195

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

6196

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 8 x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

6197

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x -\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6198

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

6199

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 6 x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6200

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

6201

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

6211

\[ {}r^{\prime \prime }-6 r^{\prime }+9 r = 0 \]

[[_2nd_order, _missing_x]]

6213

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \,{\mathrm e}^{x}+6 \,{\mathrm e}^{-x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6215

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = x \]

[[_2nd_order, _with_linear_symmetries]]

6219

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

6220

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 26 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6221

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6222

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 6 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6223

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6227

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 5 x +4 \,{\mathrm e}^{x} \left (1+\sin \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6234

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

6243

\[ {}y^{\prime \prime } = -4 y \]

[[_2nd_order, _missing_x]]

6245

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

6247

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

6249

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

6251

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6253

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6255

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6388

\[ {}x^{\prime \prime }-\omega ^{2} x = 0 \]

[[_2nd_order, _missing_x]]

6390

\[ {}x^{\prime \prime }+42 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6393

\[ {}x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6394

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6395

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6396

\[ {}y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6397

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6407

\[ {}x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6408

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

6409

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6410

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6411

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

6412

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

6413

\[ {}x y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6414

\[ {}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6479

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 8 \]

[[_2nd_order, _missing_x]]

6480

\[ {}y^{\prime \prime }-4 y = 10 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6481

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6482

\[ {}y^{\prime \prime }+25 y = 5 x^{2}+x \]

[[_2nd_order, _with_linear_symmetries]]

6483

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6484

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 2 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6485

\[ {}3 y^{\prime \prime }-2 y^{\prime }-y = 2 x -3 \]

[[_2nd_order, _with_linear_symmetries]]

6486

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 8 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

6487

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6488

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 54 x +18 \]

[[_2nd_order, _with_linear_symmetries]]

6489

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 100 \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6490

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6491

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 2 \cosh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6492

\[ {}y^{\prime \prime }-y^{\prime }+10 y = 20-{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6493

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6494

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x +{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6495

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

6496

\[ {}y^{\prime \prime }-9 y = {\mathrm e}^{3 x}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6497

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = {\mathrm e}^{-3 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

6498

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 6 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6499

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6500

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 3 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6501

\[ {}y^{\prime \prime }+6 y^{\prime }+10 y = 50 x \]

[[_2nd_order, _with_linear_symmetries]]

6502

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 85 \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6503

\[ {}y^{\prime \prime } = 3 \sin \left (x \right )-4 y \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6504

\[ {}\frac {x^{\prime \prime }}{2} = -48 x \]
i.c.

[[_2nd_order, _missing_x]]

6505

\[ {}x^{\prime \prime }+5 x^{\prime }+6 x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6506

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

6507

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6508

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6509

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 2 \sin \left (\frac {t}{2}\right )-\cos \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6510

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 64 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

6511

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 50 t^{3}-36 t^{2}-63 t +18 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6513

\[ {}y^{\prime \prime } = 9 x^{2}+2 x -1 \]

[[_2nd_order, _quadrature]]

6514

\[ {}y^{\prime \prime }-5 y = 2 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

6518

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

6519

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6520

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6521

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

6522

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6529

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6530

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6531

\[ {}x^{\prime \prime }+4 x = \sin \left (2 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6532

\[ {}t^{2} N^{\prime \prime }-2 t N^{\prime }+2 N = t \ln \left (t \right ) \]

[[_2nd_order, _with_linear_symmetries]]

6535

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{5}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6536

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6537

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6538

\[ {}y^{\prime \prime }-60 y^{\prime }-900 y = 5 \,{\mathrm e}^{10 x} \]

[[_2nd_order, _with_linear_symmetries]]

6539

\[ {}y^{\prime \prime }-7 y^{\prime } = -3 \]

[[_2nd_order, _missing_x]]

6540

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6541

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x = x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

6573

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

6574

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6575

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

6576

\[ {}y^{\prime \prime }-y = 4-x \]

[[_2nd_order, _with_linear_symmetries]]

6577

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

6578

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \left (1-x \right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6691

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

6693

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

6694

\[ {}y^{\prime \prime }+9 y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6695

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6697

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6701

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

[[_2nd_order, _missing_x]]

6703

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

6705

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

6706

\[ {}y^{\prime \prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

6711

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 1 \]

[[_2nd_order, _missing_x]]

6712

\[ {}y^{\prime \prime }-4 y^{\prime } = 5 \]

[[_2nd_order, _missing_x]]

6716

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

6717

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

6718

\[ {}y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6719

\[ {}y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6720

\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6721

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6722

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6723

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6724

\[ {}y^{\prime \prime }+4 y = 4 \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6725

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = \frac {1}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6726

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6727

\[ {}y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6728

\[ {}y^{\prime \prime }+2 y = {\mathrm e}^{x}+2 \]

[[_2nd_order, _with_linear_symmetries]]

6729

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6730

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x^{2}+\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6731

\[ {}y^{\prime \prime }-9 y = x +{\mathrm e}^{2 x}-\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6733

\[ {}y^{\prime \prime }+y = -2 \sin \left (x \right )+4 x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6735

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6736

\[ {}y^{\prime \prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

6737

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x}+x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6740

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6741

\[ {}y^{\prime \prime }+5 y = \cos \left (\sqrt {5}\, x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6743

\[ {}y^{\prime \prime }-y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

6744

\[ {}y^{\prime \prime }+2 y = x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6745

\[ {}y^{\prime \prime }-2 y^{\prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6746

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 x}}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6747

\[ {}y^{\prime \prime }-y = x \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6748

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6749

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x +x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6750

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = \ln \left (x \right )^{2}-\ln \left (x^{2}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

6753

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = \ln \left (x +1\right )^{2}+x -1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6754

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y = 6 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

6755

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

6756

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

6757

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

6758

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (x +2\right ) y = \left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6759

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6760

\[ {}x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y = \left (-x^{2}+6\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6761

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6762

\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = \left (x^{2}-x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6763

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6764

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+y = \frac {x +1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6765

\[ {}x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

6767

\[ {}x y^{\prime \prime }-3 y^{\prime }+\frac {3 y}{x} = x +2 \]

[[_2nd_order, _with_linear_symmetries]]

6768

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (3 x +2\right ) {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

6769

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (9 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

6770

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 4 \]

[[_2nd_order, _linear, _nonhomogeneous]]

6771

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \frac {-x^{2}+1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

6773

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {2}{x^{3}} \]

[[_2nd_order, _missing_y]]

6774

\[ {}x y^{\prime \prime }-y^{\prime } = -\frac {2}{x}-\ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

6888

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

6889

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6898

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

6908

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

6909

\[ {}2 y^{\prime \prime }+7 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

6910

\[ {}x y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

6911

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

6912

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 0 \]

[[_Emden, _Fowler]]

6917

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = 10 \]

[[_2nd_order, _missing_x]]

6925

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = 5 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6927

\[ {}y^{\prime \prime } = f \left (x \right ) \]

[[_2nd_order, _quadrature]]

6939

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6940

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6941

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6942

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6943

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6944

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6945

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6946

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6972

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6973

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6974

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6975

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

6986

\[ {}y^{\prime \prime }+9 y = 18 \]

[[_2nd_order, _missing_x]]

6987

\[ {}x y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

6988

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

6996

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )-2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6997

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

6998

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

6999

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \sec \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7002

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7003

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7008

\[ {}y^{\prime \prime }+9 y = 5 \]

[[_2nd_order, _missing_x]]

7010

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7011

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7012

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7013

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

7478

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7479

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7480

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7483

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7484

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7487

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

7489

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7490

\[ {}y^{\prime \prime }+y^{\prime } x +y = 2 x \,{\mathrm e}^{x}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7491

\[ {}x y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x \]

[[_2nd_order, _with_linear_symmetries]]

7492

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2}+2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7493

\[ {}x^{3} y^{\prime \prime }+y^{\prime } x -y = \cos \left (\frac {1}{x}\right ) \]

[[_2nd_order, _with_linear_symmetries]]

7494

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

7495

\[ {}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = x^{2}-1 \]

[[_2nd_order, _with_linear_symmetries]]

7498

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7499

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7517

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

7518

\[ {}s^{\prime \prime }+2 s^{\prime }+s = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7519

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

7520

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 x +1 \]

[[_2nd_order, _with_linear_symmetries]]

7521

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7522

\[ {}y^{\prime \prime }+y = 4 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7523

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7524

\[ {}p \,x^{2} u^{\prime \prime }+q x u^{\prime }+r u = f \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7525

\[ {}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]

[_Lienard]

7527

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7535

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7536

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 50 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7537

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 50 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7538

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7540

\[ {}y^{\prime \prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7541

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7542

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7545

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7546

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7557

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7581

\[ {}y^{\prime \prime } = x +2 \]

[[_2nd_order, _quadrature]]

7585

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7586

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7587

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

7589

\[ {}y^{\prime \prime } = 3 x +1 \]

[[_2nd_order, _quadrature]]

7612

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

7613

\[ {}3 y^{\prime \prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

7614

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

7615

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

7616

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7617

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

7618

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]

[[_2nd_order, _missing_x]]

7619

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7620

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7621

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7622

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7623

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7624

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7625

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7626

\[ {}y^{\prime \prime }+\left (1+4 i\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7627

\[ {}y^{\prime \prime }+\left (-1+3 i\right ) y^{\prime }-3 i y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7628

\[ {}y^{\prime \prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7629

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7630

\[ {}y^{\prime \prime }+9 y = \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7631

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7632

\[ {}y^{\prime \prime }+2 i y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

7633

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 3 \,{\mathrm e}^{-x}+2 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7634

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7635

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7636

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7637

\[ {}4 y^{\prime \prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

7638

\[ {}6 y^{\prime \prime }+5 y^{\prime }-6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

7639

\[ {}y^{\prime \prime }+\omega ^{2} y = A \cos \left (\omega x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

7650

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7651

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7657

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7664

\[ {}y^{\prime \prime }-2 i y^{\prime }-y = {\mathrm e}^{i x}-2 \,{\mathrm e}^{-i x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7665

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7666

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7667

\[ {}y^{\prime \prime }-4 y = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7668

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7669

\[ {}y^{\prime \prime }+9 y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7670

\[ {}y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7671

\[ {}y^{\prime \prime }+i y^{\prime }+2 y = 2 \cosh \left (2 x \right )+{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7674

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7675

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

7676

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

7686

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

7697

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +\alpha ^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7699

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7700

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

7701

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7702

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

7704

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

7705

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

7706

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

[[_Emden, _Fowler]]

7707

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 \pi y = x \]

[[_2nd_order, _with_linear_symmetries]]

7759

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

7762

\[ {}y^{\prime \prime }+k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

7764

\[ {}x y^{\prime \prime }-2 y^{\prime } = x^{3} \]

[[_2nd_order, _missing_y]]

7777

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7778

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

7804

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7907

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

7911

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

7936

\[ {}x y^{\prime \prime }-3 y^{\prime } = 5 x \]

[[_2nd_order, _missing_y]]

7937

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

7938

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7939

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

7940

\[ {}2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7941

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

7942

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

7943

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

7944

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

7945

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

7946

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

7947

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

7948

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

7949

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

7950

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

7951

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

7952

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

7953

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

7954

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

7955

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7956

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7957

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7958

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7959

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7960

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

7961

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

7962

\[ {}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

7963

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

7964

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

7965

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7966

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7967

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

7968

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7969

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7970

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

7971

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7972

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

[[_2nd_order, _with_linear_symmetries]]

7973

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

[[_2nd_order, _with_linear_symmetries]]

7974

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7975

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7976

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7977

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

7978

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

7979

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7980

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

7981

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

7982

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7983

\[ {}y^{\prime \prime }-3 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

7985

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7986

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7987

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7988

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7989

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

7990

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7991

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7992

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

7993

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7994

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7995

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7996

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7997

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

7998

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

7999

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

8000

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \left (x^{2}-1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

8001

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (x +1\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8002

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

8003

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

8004

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

8039

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

8040

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

8041

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

8042

\[ {}y^{\prime \prime }-y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

8043

\[ {}y^{\prime \prime }-2 y^{\prime }-5 y = x \]

[[_2nd_order, _with_linear_symmetries]]

8044

\[ {}y^{\prime \prime }+y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

8045

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8046

\[ {}y^{\prime \prime }-y = {\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

8047

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8048

\[ {}y^{\prime \prime }-y^{\prime }+4 y = x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8049

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8050

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8051

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8052

\[ {}y^{\prime \prime }-y = \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8053

\[ {}y^{\prime \prime } = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _quadrature]]

8054

\[ {}y^{\prime \prime }-2 y^{\prime } = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _missing_y]]

8055

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 x -1 \]

[[_2nd_order, _with_linear_symmetries]]

8056

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

8057

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8058

\[ {}y^{\prime \prime }+2 y^{\prime }-y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8059

\[ {}y^{\prime \prime }+9 y = \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8060

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = x \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8061

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {2}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

8062

\[ {}y^{\prime \prime }+4 y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8067

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8068

\[ {}y^{\prime \prime }+9 y = -3 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8070

\[ {}y^{\prime \prime } = -3 y \]
i.c.

[[_2nd_order, _missing_x]]

8219

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

8221

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

8223

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8225

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

8289

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8294

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8301

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8303

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

8307

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

8308

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8309

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8310

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8362

\[ {}t y^{\prime \prime }-y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

8363

\[ {}2 y^{\prime \prime }+t y^{\prime }-2 y = 10 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8496

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]
i.c.

[[_2nd_order, _missing_y]]

8497

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8500

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

8509

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

[[_2nd_order, _missing_y]]

8529

\[ {}y^{\prime \prime }+y = -\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8530

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

8531

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

8532

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1 \]

[[_2nd_order, _with_linear_symmetries]]

8606

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

8607

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8608

\[ {}9 x^{2} y^{\prime \prime }+2 y = 0 \]

[[_Emden, _Fowler]]

8609

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8610

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

8611

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8612

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8613

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

8614

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

8705

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

8706

\[ {}y^{\prime \prime }+16 y = 4 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8707

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

8708

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8752

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

8753

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8754

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 1 \]

[[_2nd_order, _missing_x]]

8755

\[ {}y^{\prime \prime }+y^{\prime }+4 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8759

\[ {}t y^{\prime \prime }+4 y^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

8760

\[ {}\left (t^{2}+9\right ) y^{\prime \prime }+2 t y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

8761

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

8762

\[ {}t y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8763

\[ {}t^{2} y^{\prime \prime }-2 y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

8765

\[ {}t y^{\prime \prime }-y^{\prime }+4 t^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8766

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8767

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

8768

\[ {}y^{\prime \prime } = f \left (t \right ) \]

[[_2nd_order, _quadrature]]

8769

\[ {}y^{\prime \prime } = k \]

[[_2nd_order, _quadrature]]

8772

\[ {}y^{\prime \prime } = 4 \sin \left (x \right )-4 \]

[[_2nd_order, _quadrature]]

8773

\[ {}y y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8777

\[ {}y^{2} y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

8782

\[ {}a y y^{\prime \prime }+b y = 0 \]

[[_2nd_order, _quadrature]]

8795

\[ {}z^{\prime \prime }+3 z^{\prime }+2 z = 24 \,{\mathrm e}^{-3 t}-24 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8800

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8801

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8802

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

8805

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8806

\[ {}y^{\prime \prime }-y^{\prime } x -x y-2 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8807

\[ {}y^{\prime \prime }-y^{\prime } x -x y-3 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8808

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{2}-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8809

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{3}+2 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8810

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{4}-6 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8811

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{5}+24 = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8812

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8813

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8814

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

8848

\[ {}y^{\prime \prime }-y^{\prime } x -x y-x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8853

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8859

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

[[_2nd_order, _missing_x]]

8861

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8862

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8863

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8864

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8865

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8866

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8867

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8868

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8869

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8870

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8871

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8873

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

8874

\[ {}x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

[[_2nd_order, _with_linear_symmetries]]

8875

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

8888

\[ {}4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (1+\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8957

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

8960

\[ {}y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

8963

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8964

\[ {}y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8965

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

8966

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8967

\[ {}x y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8977

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

8981

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9072

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

9075

\[ {}a y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

9078

\[ {}y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

9079

\[ {}{y^{\prime \prime }}^{2} = 1 \]

[[_2nd_order, _quadrature]]

9080

\[ {}y^{\prime \prime } = x \]

[[_2nd_order, _quadrature]]

9083

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

9086

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

9089

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

9092

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

9095

\[ {}y^{\prime \prime }+y^{\prime }+y = 1 \]

[[_2nd_order, _missing_x]]

9096

\[ {}y^{\prime \prime }+y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

9097

\[ {}y^{\prime \prime }+y^{\prime }+y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

9098

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1 \]

[[_2nd_order, _with_linear_symmetries]]

9099

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

9100

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

9101

\[ {}y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

9102

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

9103

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

9104

\[ {}y^{\prime \prime }+y^{\prime } = x +1 \]

[[_2nd_order, _missing_y]]

9105

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

9106

\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

9107

\[ {}y^{\prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

9108

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

9109

\[ {}y^{\prime \prime }+y = 1 \]

[[_2nd_order, _missing_x]]

9110

\[ {}y^{\prime \prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

9111

\[ {}y^{\prime \prime }+y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

9112

\[ {}y^{\prime \prime }+y = x^{2}+x +1 \]

[[_2nd_order, _with_linear_symmetries]]

9113

\[ {}y^{\prime \prime }+y = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

9114

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

9115

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

9137

\[ {}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9138

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

9139

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9140

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9142

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{3}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

9146

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9147

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9150

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x^{m +1} \]

[[_2nd_order, _with_linear_symmetries]]

9151

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9153

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

9154

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

9155

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

9156

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

9157

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9158

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9160

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9161

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

9169

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9173

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

9174

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9175

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9176

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9177

\[ {}3 y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9178

\[ {}5 y^{\prime \prime }-2 y^{\prime } x +10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9179

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9180

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9181

\[ {}y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9182

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9183

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9184

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9185

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9186

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = 0 \]

[_Laguerre]

9187

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9188

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9189

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = 0 \]

[_Laguerre]

9190

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9191

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9192

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9193

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9194

\[ {}2 y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9195

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9196

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9197

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9198

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9199

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9200

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9201

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9202

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9203

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9204

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9205

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9206

\[ {}x y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9207

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9208

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9209

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9210

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9211

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9212

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9213

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9214

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9215

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9216

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9217

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9218

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9219

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (4+6 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9220

\[ {}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9221

\[ {}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9222

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9223

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9224

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9225

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x -12 y = 0 \]

[_Gegenbauer]

9226

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9227

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x -4 y = 0 \]

[_Gegenbauer]

9228

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x +28 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9229

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9230

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }-9 y^{\prime } x -6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9231

\[ {}\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9232

\[ {}y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9233

\[ {}\left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9234

\[ {}\left (2 x^{2}+4 x +5\right ) y^{\prime \prime }-20 \left (x +1\right ) y^{\prime }+60 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9235

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+7 x^{2} y^{\prime }+9 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9236

\[ {}\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9237

\[ {}y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9238

\[ {}\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9239

\[ {}y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9240

\[ {}\left (3 x +1\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9241

\[ {}\left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9242

\[ {}\left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9243

\[ {}\left (x +4\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9244

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (x +1\right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9245

\[ {}x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9246

\[ {}\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (1+7 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9247

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-\left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9248

\[ {}y^{\prime \prime }+3 y^{\prime } x +\left (2 x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9249

\[ {}\left (2+4 x \right ) y^{\prime \prime }-4 y^{\prime }-\left (6+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9250

\[ {}y^{\prime \prime }-3 y^{\prime } x +\left (2 x^{2}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9251

\[ {}2 y^{\prime \prime }+5 y^{\prime } x +\left (2 x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9252

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9253

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9254

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9255

\[ {}3 x^{2} y^{\prime \prime }+2 x \left (-2 x^{2}+x +1\right ) y^{\prime }+\left (-8 x^{2}+2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9256

\[ {}12 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+35 x +11\right ) y^{\prime }-\left (-5 x^{2}-10 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9257

\[ {}x^{2} \left (10 x^{2}+x +5\right ) y^{\prime \prime }+x \left (48 x^{2}+3 x +4\right ) y^{\prime }+\left (36 x^{2}+x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9258

\[ {}18 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (x^{2}+11 x +5\right ) y^{\prime }-\left (-5 x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9259

\[ {}2 x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9260

\[ {}2 x^{2} y^{\prime \prime }+x \left (5+x \right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9261

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9262

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (1-2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9263

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9264

\[ {}2 x^{2} \left (x +3\right ) y^{\prime \prime }+x \left (1+5 x \right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9265

\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9266

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9267

\[ {}6 x^{2} y^{\prime \prime }+x \left (10-x \right ) y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9268

\[ {}x^{2} \left (3+4 x \right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (3+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9269

\[ {}2 x^{2} \left (3 x +2\right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9270

\[ {}x^{2} \left (x +2\right ) y^{\prime \prime }+5 x \left (1-x \right ) y^{\prime }-\left (2-8 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9271

\[ {}8 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-13 x^{2}+1\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9272

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9273

\[ {}x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9274

\[ {}4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+x \left (-19 x^{2}+7\right ) y^{\prime }-\left (14 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9275

\[ {}3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9276

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }-x \left (-7 x^{2}+12\right ) y^{\prime }+\left (3 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9277

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (7 x^{2}+4\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9278

\[ {}2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9279

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (7 x^{2}+4\right ) y^{\prime }+8 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9280

\[ {}2 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }-\left (-4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9281

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9282

\[ {}6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9283

\[ {}9 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+3\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9284

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9285

\[ {}8 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+2 x \left (34 x^{2}+5\right ) y^{\prime }-\left (-30 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9286

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9287

\[ {}6 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (50 x^{2}+1\right ) y^{\prime }+\left (30 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9288

\[ {}28 x^{2} \left (1-3 x \right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9289

\[ {}8 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+2 x \left (-21 x^{2}+10\right ) y^{\prime }-\left (35 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9290

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }-4 x \left (-3 x^{2}-3 x +1\right ) y^{\prime }+3 \left (x^{2}-x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9291

\[ {}3 x^{2} \left (x +1\right )^{2} y^{\prime \prime }-x \left (-11 x^{2}-10 x +1\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9292

\[ {}4 x^{2} \left (x^{2}+2 x +3\right ) y^{\prime \prime }-x \left (-15 x^{2}-14 x +3\right ) y^{\prime }+\left (7 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9293

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9294

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9295

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9296

\[ {}x^{2} y^{\prime \prime }-x \left (5-x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9297

\[ {}4 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+12 x^{2} \left (x +1\right ) y^{\prime }+\left (3 x^{2}+3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9298

\[ {}x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }-x \left (-2 x^{2}-4 x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9299

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9300

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+14 x +5\right ) y^{\prime }+\left (12 x^{2}+18 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9301

\[ {}16 x^{2} y^{\prime \prime }+4 x \left (2 x^{2}+x +6\right ) y^{\prime }+\left (18 x^{2}+5 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9302

\[ {}9 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (-x^{2}+11 x +5\right ) y^{\prime }+\left (-7 x^{2}+16 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9303

\[ {}36 x^{2} \left (1-2 x \right ) y^{\prime \prime }+24 x \left (1-9 x \right ) y^{\prime }+\left (1-70 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9304

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (3-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9305

\[ {}x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5-4 x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9306

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9307

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6-x \right ) y^{\prime }+\left (8-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9308

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (5+9 x \right ) y^{\prime }+\left (3 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9309

\[ {}x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5+4 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9310

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (7+x \right ) y^{\prime }+\left (9-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9311

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9312

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-3 x \left (-x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9313

\[ {}4 x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9314

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9315

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+7 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9316

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-4 x^{2}+1\right ) y^{\prime }+\left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9317

\[ {}4 x^{2} \left (x^{2}+4\right ) y^{\prime \prime }+3 x \left (3 x^{2}+8\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9318

\[ {}3 x^{2} \left (x^{2}+3\right ) y^{\prime \prime }+x \left (11 x^{2}+3\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9319

\[ {}9 x^{2} y^{\prime \prime }-3 x \left (-2 x^{2}+7\right ) y^{\prime }+\left (2 x^{2}+25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9320

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9321

\[ {}x^{2} \left (1-2 x \right ) y^{\prime \prime }+3 y^{\prime } x +\left (1+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9322

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9323

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }-x \left (3-5 x \right ) y^{\prime }+\left (4-5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9324

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (9 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9325

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-x^{2}+1\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9326

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-8 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9327

\[ {}4 x^{2} y^{\prime \prime }+2 x \left (-x^{2}+4\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9328

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9329

\[ {}9 x^{2} \left (x +3\right ) y^{\prime \prime }+3 x \left (3+7 x \right ) y^{\prime }+\left (3+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9330

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (3 x^{2}+2\right ) y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9331

\[ {}16 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x \left (9 x^{2}+1\right ) y^{\prime }+\left (49 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9332

\[ {}x^{2} \left (3 x +4\right ) y^{\prime \prime }-x \left (4-3 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9333

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }+8 x^{2} \left (2 x +3\right ) y^{\prime }+\left (9 x^{2}+3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9334

\[ {}x^{2} \left (1-x \right )^{2} y^{\prime \prime }-x \left (-3 x^{2}+2 x +1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9335

\[ {}9 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+7 x +1\right ) y^{\prime }+\left (25 x^{2}+4 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9336

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }-x \left (4-7 x \right ) y^{\prime }-\left (5-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9337

\[ {}x^{2} \left (1-2 x \right ) y^{\prime \prime }+x \left (8-9 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9338

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (10 x^{2}+3\right ) y^{\prime }-\left (-14 x^{2}+15\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9339

\[ {}x^{2} \left (-2 x^{2}+1\right ) y^{\prime \prime }+x \left (-13 x^{2}+7\right ) y^{\prime }-14 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9340

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }-\left (3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9341

\[ {}2 x^{2} \left (3 x +2\right ) y^{\prime \prime }+x \left (4+21 x \right ) y^{\prime }-\left (1-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9342

\[ {}x^{2} y^{\prime \prime }+x \left (x +2\right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9343

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (3+8 x \right ) y^{\prime }-\left (5-49 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9344

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (3+10 x \right ) y^{\prime }+30 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9345

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-3 \left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9346

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (9+13 x \right ) y^{\prime }+\left (7+5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9347

\[ {}4 x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (4-x \right ) y^{\prime }-\left (7+5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9348

\[ {}3 x^{2} \left (x +3\right ) y^{\prime \prime }-x \left (15+x \right ) y^{\prime }-20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9349

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (1-10 x \right ) y^{\prime }-\left (9-10 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9350

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+3 x^{2} y^{\prime }-\left (6-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9351

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (3+14 x \right ) y^{\prime }+\left (6+100 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9352

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6+11 x \right ) y^{\prime }+\left (6+32 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9353

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (1+4 x \right ) y^{\prime }-\left (49+27 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9354

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+7\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9355

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+7\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9356

\[ {}x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9357

\[ {}x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9358

\[ {}x^{2} y^{\prime \prime }+x \left (-3 x^{2}+1\right ) y^{\prime }-4 \left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9359

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (11 x^{2}+5\right ) y^{\prime }+24 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9360

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 y^{\prime } x -\left (-x^{2}+35\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9361

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9362

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9363

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9364

\[ {}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9365

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9366

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[_Gegenbauer]

9367

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9368

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

[_Gegenbauer]

9369

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9370

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9371

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9372

\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9373

\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

[_Laguerre]

9374

\[ {}2 t y^{\prime \prime }+\left (1+t \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9375

\[ {}2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9376

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9377

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9378

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

[_Lienard]

9379

\[ {}t^{2} y^{\prime \prime }+t \left (1+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9380

\[ {}t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

9381

\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9382

\[ {}t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9383

\[ {}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9384

\[ {}t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9385

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9386

\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y = 0 \]

[_Gegenbauer]

9387

\[ {}4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9388

\[ {}f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9389

\[ {}z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

[_Lienard]

9390

\[ {}z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9391

\[ {}y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[_erf]

9392

\[ {}y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9393

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9394

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 y^{\prime } x -16 y = 0 \]

[_Gegenbauer]

9395

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9396

\[ {}y^{\prime \prime }+y^{\prime } x +\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9397

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9398

\[ {}4 y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[_Lienard]

9399

\[ {}y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9400

\[ {}4 x y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9401

\[ {}6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9402

\[ {}3 x^{2} y^{\prime \prime }-x \left (x +8\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9403

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9404

\[ {}4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9405

\[ {}x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (1-2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9406

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9407

\[ {}x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9408

\[ {}x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9409

\[ {}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9410

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9411

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9412

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9413

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9414

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9415

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9416

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9417

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (3 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9418

\[ {}x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9419

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9420

\[ {}x^{2} y^{\prime \prime }+2 x \left (x +2\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9421

\[ {}x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9422

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9423

\[ {}x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9424

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9425

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

9426

\[ {}2 x y^{\prime \prime }+5 \left (1-2 x \right ) y^{\prime }-5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9427

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9428

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9429

\[ {}x^{4} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9430

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9431

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9432

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9433

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9434

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }-\frac {y^{\prime } x}{2}-\frac {3 x y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9435

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9436

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9437

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9438

\[ {}2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9439

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

[_Jacobi]

9440

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9441

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

[_Jacobi]

9442

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

[_Jacobi]

9443

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9444

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9445

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9446

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9447

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9448

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9449

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9450

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9451

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9452

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9453

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9454

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9455

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

9456

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9457

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9458

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9459

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9460

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9461

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9462

\[ {}\left (2 x -3\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9463

\[ {}y^{\prime \prime }-y^{\prime } x -3 y = 0 \]

[_Hermite]

9464

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9465

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

9466

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9467

\[ {}x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9468

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

9469

\[ {}x y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9470

\[ {}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9471

\[ {}y^{\prime \prime }-2 y^{\prime } x +x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9472

\[ {}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9473

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-\left (2 x +1\right ) \left (-y+y^{\prime } x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9474

\[ {}2 \left (2-x \right ) x^{2} y^{\prime \prime }-x \left (4-x \right ) y^{\prime }+\left (3-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9475

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9476

\[ {}x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9477

\[ {}y^{\prime \prime }-2 y^{\prime } x +8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9478

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9479

\[ {}x \left (x +2\right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9480

\[ {}x \left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9481

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9482

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9483

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9484

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9485

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

9486

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9487

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

9488

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9489

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9490

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9491

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

9492

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

[_Laguerre]

9493

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9494

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9495

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9496

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9497

\[ {}x^{4} y^{\prime \prime }+\lambda y = 0 \]

[[_Emden, _Fowler]]

9498

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9499

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9500

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9501

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

9502

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9503

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9504

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9505

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

9506

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9507

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

9508

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9509

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +30 y = 0 \]

[_Gegenbauer]

9510

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

9511

\[ {}x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9512

\[ {}2 x \left (x -1\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Jacobi]

9513

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9514

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9515

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9516

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9517

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

9518

\[ {}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9519

\[ {}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9520

\[ {}3 t \left (1+t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9521

\[ {}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9522

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9523

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9524

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

9525

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

9526

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9527

\[ {}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9528

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

9529

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9530

\[ {}u^{\prime \prime }+\frac {u}{x^{2}} = 0 \]

[[_Emden, _Fowler]]

9531

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9532

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9533

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9534

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9535

\[ {}y^{\prime \prime }+\frac {y}{2 x^{4}} = 0 \]

[[_Emden, _Fowler]]

9536

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9537

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9538

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9539

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9540

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9541

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9542

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9543

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9544

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9545

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9546

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9547

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

9548

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -x y = 0 \]

[[_Emden, _Fowler]]

9549

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9550

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9551

\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9552

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9553

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9554

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9555

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9556

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9557

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9558

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y = 0 \]

[[_Emden, _Fowler]]

9559

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

9560

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9561

\[ {}x^{3} y^{\prime \prime }+y^{\prime }-\frac {y}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9562

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9563

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9564

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

9565

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

9566

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9567

\[ {}\left (x +1\right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9568

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[_Gegenbauer]

9569

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

9570

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9571

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9572

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9573

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9574

\[ {}3 y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9575

\[ {}5 y^{\prime \prime }-2 y^{\prime } x +10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9576

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9577

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9578

\[ {}y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9579

\[ {}\left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9580

\[ {}\left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9581

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9582

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9583

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9584

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9585

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9586

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9587

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = 0 \]

[_Laguerre]

9588

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9589

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9590

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = 0 \]

[_Laguerre]

9591

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9592

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9593

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9594

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9595

\[ {}2 y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9596

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9597

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9598

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9599

\[ {}\left (-x^{2}+4\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9600

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9601

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9602

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9603

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9604

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9605

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9606

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9607

\[ {}x^{2} y^{\prime \prime }+2 x \left (x -1\right ) y^{\prime }+\left (x^{2}-2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9608

\[ {}x^{2} y^{\prime \prime }-x \left (2 x -1\right ) y^{\prime }+\left (x^{2}-x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9609

\[ {}\left (1-2 x \right ) y^{\prime \prime }+2 y^{\prime }+\left (2 x -3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9610

\[ {}2 x y^{\prime \prime }+\left (1+4 x \right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9611

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9612

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9613

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9614

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9615

\[ {}x y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9616

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9617

\[ {}x y^{\prime \prime }-\left (1+4 x \right ) y^{\prime }+\left (4 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9618

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9619

\[ {}\left (2 x +1\right ) x y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9620

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9621

\[ {}x y^{\prime \prime }-\left (1+4 x \right ) y^{\prime }+\left (4 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9622

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9623

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }-\left (x^{2}+2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9624

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9625

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9626

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 y^{\prime }-\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9627

\[ {}x y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9628

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9629

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (-16 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9630

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9631

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9632

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9633

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +2\right ) y^{\prime }+\left (x^{2}+4 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9634

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9635

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9636

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (x +1\right ) y^{\prime }+\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9637

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9638

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9639

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9640

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-\left (4+6 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9641

\[ {}x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+4\right ) y^{\prime }+2 \left (-x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9642

\[ {}x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9643

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+6 y^{\prime } x +6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9644

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9645

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x +20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9646

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-8 y^{\prime } x -12 y = 0 \]

[_Gegenbauer]

9647

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9648

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-5 y^{\prime } x -4 y = 0 \]

[_Gegenbauer]

9649

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-10 y^{\prime } x +28 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9650

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9651

\[ {}\left (2 x^{2}-8 x +11\right ) y^{\prime \prime }-16 \left (x -2\right ) y^{\prime }+36 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9652

\[ {}y^{\prime \prime }+\left (x -3\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9653

\[ {}\left (x^{2}-8 x +14\right ) y^{\prime \prime }-8 \left (x -4\right ) y^{\prime }+20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9654

\[ {}\left (2 x^{2}+4 x +5\right ) y^{\prime \prime }-20 \left (x +1\right ) y^{\prime }+60 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9655

\[ {}\left (x^{3}+1\right ) y^{\prime \prime }+7 x^{2} y^{\prime }+9 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9656

\[ {}\left (2 x^{5}+1\right ) y^{\prime \prime }+14 x^{4} y^{\prime }+10 x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9657

\[ {}y^{\prime \prime }+x^{6} y^{\prime }+7 x^{5} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9658

\[ {}\left (x^{8}+1\right ) y^{\prime \prime }-16 x^{7} y^{\prime }+72 x^{6} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9659

\[ {}y^{\prime \prime }+x^{5} y^{\prime }+6 x^{4} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9660

\[ {}\left (3 x +1\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9661

\[ {}\left (3 x^{2}+x +1\right ) y^{\prime \prime }+\left (2+15 x \right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9662

\[ {}\left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9663

\[ {}\left (x +4\right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9664

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (x +1\right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9665

\[ {}x^{2} y^{\prime \prime }-\left (6-7 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9666

\[ {}\left (2 x^{2}+x +1\right ) y^{\prime \prime }+\left (1+7 x \right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9667

\[ {}\left (x +3\right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }-\left (2-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9668

\[ {}y^{\prime \prime }+3 y^{\prime } x +\left (2 x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9669

\[ {}\left (4 x +2\right ) y^{\prime \prime }-4 y^{\prime }-\left (6+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9670

\[ {}y^{\prime \prime }-3 y^{\prime } x +\left (2 x^{2}+5\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9671

\[ {}2 y^{\prime \prime }+5 y^{\prime } x +\left (2 x^{2}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9672

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9673

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9674

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9675

\[ {}3 x^{2} y^{\prime \prime }+2 x \left (-2 x^{2}+x +1\right ) y^{\prime }+\left (-8 x^{2}+2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9676

\[ {}12 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+35 x +11\right ) y^{\prime }-\left (-5 x^{2}-10 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9677

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

9678

\[ {}18 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (x^{2}+11 x +5\right ) y^{\prime }-\left (-5 x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9679

\[ {}2 x^{2} y^{\prime \prime }+x \left (2 x +3\right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9680

\[ {}2 x^{2} y^{\prime \prime }+x \left (5+x \right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9681

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9682

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +\left (1-2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9683

\[ {}3 x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-\left (3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9684

\[ {}2 x^{2} \left (x +3\right ) y^{\prime \prime }+x \left (1+5 x \right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9685

\[ {}x^{2} \left (x +4\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9686

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9687

\[ {}6 x^{2} y^{\prime \prime }+x \left (10-x \right ) y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9688

\[ {}x^{2} \left (3+4 x \right ) y^{\prime \prime }+x \left (11+4 x \right ) y^{\prime }-\left (3+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9689

\[ {}2 x^{2} \left (3 x +2\right ) y^{\prime \prime }+x \left (4+11 x \right ) y^{\prime }-\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9690

\[ {}x^{2} \left (x +2\right ) y^{\prime \prime }+5 x \left (1-x \right ) y^{\prime }-\left (2-8 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9691

\[ {}8 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-13 x^{2}+1\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9692

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9693

\[ {}x \left (x^{2}+3\right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-8 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9694

\[ {}4 x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+x \left (-19 x^{2}+7\right ) y^{\prime }-\left (14 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9695

\[ {}3 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+x \left (-11 x^{2}+1\right ) y^{\prime }+\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9696

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }-x \left (-7 x^{2}+12\right ) y^{\prime }+\left (3 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9697

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+x \left (7 x^{2}+4\right ) y^{\prime }-\left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9698

\[ {}2 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+5 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-40 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9699

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (7 x^{2}+4\right ) y^{\prime }+8 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9700

\[ {}2 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (8 x^{2}+3\right ) y^{\prime }-\left (-4 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9701

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (x^{2}+3\right ) y^{\prime }-\left (-5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9702

\[ {}6 x^{2} y^{\prime \prime }+x \left (6 x^{2}+1\right ) y^{\prime }+\left (9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9703

\[ {}9 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+3\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9704

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9705

\[ {}8 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+2 x \left (34 x^{2}+5\right ) y^{\prime }-\left (-30 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9706

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (1-3 x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9707

\[ {}6 x^{2} \left (2 x^{2}+1\right ) y^{\prime \prime }+x \left (50 x^{2}+1\right ) y^{\prime }+\left (30 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9708

\[ {}28 x^{2} \left (1-3 x \right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9709

\[ {}8 x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+2 x \left (-21 x^{2}+10\right ) y^{\prime }-\left (35 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9710

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }-4 x \left (-3 x^{2}-3 x +1\right ) y^{\prime }+3 \left (x^{2}-x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9711

\[ {}3 x^{2} \left (x +1\right )^{2} y^{\prime \prime }-x \left (-11 x^{2}-10 x +1\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9712

\[ {}4 x^{2} \left (x^{2}+2 x +3\right ) y^{\prime \prime }-x \left (-15 x^{2}-14 x +3\right ) y^{\prime }+\left (7 x^{2}+3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9713

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9714

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9715

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-2 x \left (2 x^{2}+1\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9716

\[ {}x^{2} y^{\prime \prime }-x \left (5-x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9717

\[ {}4 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+12 x^{2} \left (x +1\right ) y^{\prime }+\left (3 x^{2}+3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9718

\[ {}x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }-x \left (-2 x^{2}-4 x +1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9719

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-2 x^{2}+3 x +5\right ) y^{\prime }+\left (-14 x^{2}+12 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9720

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (3 x^{2}+14 x +5\right ) y^{\prime }+\left (12 x^{2}+18 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9721

\[ {}16 x^{2} y^{\prime \prime }+4 x \left (2 x^{2}+x +6\right ) y^{\prime }+\left (18 x^{2}+5 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9722

\[ {}9 x^{2} \left (x +1\right ) y^{\prime \prime }+3 x \left (-x^{2}+11 x +5\right ) y^{\prime }+\left (-7 x^{2}+16 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9723

\[ {}36 x^{2} \left (1-2 x \right ) y^{\prime \prime }+24 x \left (1-9 x \right ) y^{\prime }+\left (1-70 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9724

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (3-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9725

\[ {}x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5-4 x \right ) y^{\prime }+\left (9-4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9726

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+x^{2} y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9727

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6-x \right ) y^{\prime }+\left (8-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9728

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (5+9 x \right ) y^{\prime }+\left (3 x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9729

\[ {}x^{2} \left (1-2 x \right ) y^{\prime \prime }-x \left (5+4 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9730

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+x \left (7+x \right ) y^{\prime }+\left (9-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9731

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9732

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-3 x \left (-x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9733

\[ {}4 x^{2} y^{\prime \prime }+2 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9734

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9735

\[ {}2 x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+7 x^{3} y^{\prime }+\left (3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9736

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-4 x^{2}+1\right ) y^{\prime }+\left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9737

\[ {}4 x^{2} \left (x^{2}+4\right ) y^{\prime \prime }+3 x \left (3 x^{2}+8\right ) y^{\prime }+\left (-9 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9738

\[ {}3 x^{2} \left (x^{2}+3\right ) y^{\prime \prime }+x \left (11 x^{2}+3\right ) y^{\prime }+\left (5 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9739

\[ {}9 x^{2} y^{\prime \prime }-3 x \left (-2 x^{2}+7\right ) y^{\prime }+\left (2 x^{2}+25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9740

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9741

\[ {}x^{2} \left (1-2 x \right ) y^{\prime \prime }+3 y^{\prime } x +\left (1+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9742

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9743

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }-x \left (3-5 x \right ) y^{\prime }+\left (4-5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9744

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (9 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9745

\[ {}9 x^{2} y^{\prime \prime }+3 x \left (-x^{2}+1\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9746

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }-8 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

9747

\[ {}4 x^{2} y^{\prime \prime }+2 x \left (-x^{2}+4\right ) y^{\prime }+\left (7 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9748

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+8 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9749

\[ {}9 x^{2} \left (x +3\right ) y^{\prime \prime }+3 x \left (3+7 x \right ) y^{\prime }+\left (3+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9750

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (3 x^{2}+2\right ) y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9751

\[ {}16 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 x \left (9 x^{2}+1\right ) y^{\prime }+\left (49 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9752

\[ {}x^{2} \left (3 x +4\right ) y^{\prime \prime }-x \left (4-3 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9753

\[ {}4 x^{2} \left (x^{2}+3 x +1\right ) y^{\prime \prime }+8 x^{2} \left (2 x +3\right ) y^{\prime }+\left (9 x^{2}+3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9754

\[ {}x^{2} \left (1-x \right )^{2} y^{\prime \prime }-x \left (-3 x^{2}+2 x +1\right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9755

\[ {}9 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+3 x \left (13 x^{2}+7 x +1\right ) y^{\prime }+\left (25 x^{2}+4 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9756

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }-x \left (4-7 x \right ) y^{\prime }-\left (5-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9757

\[ {}x^{2} \left (1-2 x \right ) y^{\prime \prime }+x \left (8-9 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9758

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (10 x^{2}+3\right ) y^{\prime }-\left (-14 x^{2}+15\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9759

\[ {}x^{2} \left (-2 x^{2}+1\right ) y^{\prime \prime }+x \left (-13 x^{2}+7\right ) y^{\prime }-14 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9760

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }-\left (3 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9761

\[ {}2 x^{2} \left (3 x +2\right ) y^{\prime \prime }+x \left (4+21 x \right ) y^{\prime }-\left (1-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9762

\[ {}x^{2} y^{\prime \prime }+x \left (x +2\right ) y^{\prime }-\left (2-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9763

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (3+8 x \right ) y^{\prime }-\left (5-49 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9764

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (3+10 x \right ) y^{\prime }+30 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9765

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-3 \left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9766

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x \left (9+13 x \right ) y^{\prime }+\left (7+5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9767

\[ {}4 x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (4-x \right ) y^{\prime }-\left (7+5 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9768

\[ {}3 x^{2} \left (x +3\right ) y^{\prime \prime }-x \left (15+x \right ) y^{\prime }-20 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9769

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (1-10 x \right ) y^{\prime }-\left (9-10 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9770

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+3 x^{2} y^{\prime }-\left (6-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9771

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }-2 x \left (3+14 x \right ) y^{\prime }+\left (6+100 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9772

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (6+11 x \right ) y^{\prime }+\left (6+32 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9773

\[ {}4 x^{2} \left (x +1\right ) y^{\prime \prime }+4 x \left (1+4 x \right ) y^{\prime }-\left (49+27 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9774

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-2 x^{2}+7\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9775

\[ {}x^{2} y^{\prime \prime }-x \left (-x^{2}+7\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9776

\[ {}x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9777

\[ {}x^{2} y^{\prime \prime }+x \left (-2 x^{2}+1\right ) y^{\prime }-4 \left (2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9778

\[ {}x^{2} y^{\prime \prime }+x \left (-3 x^{2}+1\right ) y^{\prime }-4 \left (-3 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9779

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (11 x^{2}+5\right ) y^{\prime }+24 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9780

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 y^{\prime } x -\left (-x^{2}+35\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9781

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9782

\[ {}x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9783

\[ {}4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9784

\[ {}y^{\prime \prime }-\frac {2 \left (1+t \right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9785

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9786

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[_Gegenbauer]

9787

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9788

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

[_Gegenbauer]

9789

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (1+t \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9790

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9791

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9792

\[ {}y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9793

\[ {}2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

[_Laguerre]

9794

\[ {}2 t y^{\prime \prime }+\left (1+t \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9795

\[ {}2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (1+t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9796

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9797

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9798

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

[_Lienard]

9799

\[ {}t^{2} y^{\prime \prime }+t \left (1+t \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9800

\[ {}t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

9801

\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9802

\[ {}t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9803

\[ {}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9804

\[ {}t^{2} y^{\prime \prime }-t \left (1+t \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9805

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9806

\[ {}\left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+y = 0 \]

[_Gegenbauer]

9807

\[ {}4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9808

\[ {}f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9809

\[ {}z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

[_Lienard]

9810

\[ {}z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9811

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9812

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9813

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

9814

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9815

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9816

\[ {}y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[_erf]

9817

\[ {}y^{\prime \prime }+y^{\prime } x +3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9818

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9819

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }-20 y^{\prime } x -16 y = 0 \]

[_Gegenbauer]

9820

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9821

\[ {}y^{\prime \prime }+y^{\prime } x +\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9822

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }+7 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9823

\[ {}4 y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[_Lienard]

9824

\[ {}y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9825

\[ {}4 x y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9826

\[ {}6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9827

\[ {}3 x^{2} y^{\prime \prime }-x \left (x +8\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9828

\[ {}2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9829

\[ {}4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9830

\[ {}x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (1-2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9831

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9832

\[ {}x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9833

\[ {}x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9834

\[ {}x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9835

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9836

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9837

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9838

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9839

\[ {}x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9840

\[ {}x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9841

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9842

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (3 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9843

\[ {}x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9844

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9845

\[ {}x^{2} y^{\prime \prime }+2 x \left (x +2\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9846

\[ {}x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9847

\[ {}4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9848

\[ {}x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9849

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9850

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

9851

\[ {}2 x y^{\prime \prime }+5 \left (1-2 x \right ) y^{\prime }-5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9852

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9853

\[ {}x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9854

\[ {}x^{4} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9855

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9856

\[ {}\left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9857

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9858

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9859

\[ {}x^{2} \left (1-4 x \right ) y^{\prime \prime }+\left (-\frac {1}{4} x -x^{2}\right ) y^{\prime }-\frac {5 x y}{16} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9860

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9861

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9862

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9863

\[ {}2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9864

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

[_Jacobi]

9865

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9866

\[ {}2 x \left (1-x \right ) y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

[_Jacobi]

9867

\[ {}x \left (1-x \right ) y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

[_Jacobi]

9868

\[ {}4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9869

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9870

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9871

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9872

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9873

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9874

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9875

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9876

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9877

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9878

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9879

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

9880

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

9881

\[ {}x^{2} \left (2-x \right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9882

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9883

\[ {}x y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9884

\[ {}3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9885

\[ {}x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9886

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9887

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9888

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9889

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9890

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9891

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9892

\[ {}\left (2 x -3\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9893

\[ {}y^{\prime \prime }-y^{\prime } x -3 y = 0 \]

[_Hermite]

9894

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9895

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

9896

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9897

\[ {}x \left (x +1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9898

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

9899

\[ {}x y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9900

\[ {}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9901

\[ {}y^{\prime \prime }-2 y^{\prime } x +x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9902

\[ {}x \left (-x^{2}+2\right ) y^{\prime \prime }-\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9903

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-\left (2 x +1\right ) \left (-y+y^{\prime } x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9904

\[ {}2 x^{2} \left (2-x \right ) y^{\prime \prime }-x \left (4-x \right ) y^{\prime }+\left (3-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9905

\[ {}x^{2} \left (1-x \right ) y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9906

\[ {}x y^{\prime \prime }+\left (4 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9907

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

9908

\[ {}x \left (x +2\right ) y^{\prime \prime }+2 \left (x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9909

\[ {}x \left (x +2\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9910

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9911

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9912

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9913

\[ {}\left (x^{2}-2 x +10\right ) y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9914

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

9915

\[ {}\left (x +2\right ) y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9916

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

9917

\[ {}\left (x^{2}+2\right ) y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9918

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9919

\[ {}x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9920

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

9921

\[ {}2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

[_Laguerre]

9922

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x +\left (2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9923

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9924

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9925

\[ {}x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9926

\[ {}x^{4} y^{\prime \prime }+\lambda y = 0 \]

[[_Emden, _Fowler]]

9927

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}-25\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9928

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9929

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9930

\[ {}x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

[[_Emden, _Fowler]]

9931

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9932

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x +\left (x^{4}-12\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9933

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9934

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

9935

\[ {}y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9936

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

9937

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9938

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +30 y = 0 \]

[_Gegenbauer]

9939

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

9940

\[ {}x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9941

\[ {}2 x \left (x -1\right ) y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Jacobi]

9942

\[ {}x y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9943

\[ {}x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9944

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +\left (4 x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9945

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9946

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

9947

\[ {}4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9948

\[ {}2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9949

\[ {}3 t \left (1+t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9950

\[ {}x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9951

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\frac {\left (x^{2}-1\right ) y}{4} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9952

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9953

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

9954

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler]]

9955

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9956

\[ {}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9957

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

9958

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9959

\[ {}u^{\prime \prime }+2 u^{\prime }+u = 0 \]

[[_2nd_order, _missing_x]]

9960

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9961

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9962

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9963

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (x +1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9964

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9965

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9966

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9967

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9968

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9969

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9970

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9971

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9972

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9973

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9974

\[ {}y^{\prime \prime }-y^{\prime } x -x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9975

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

9976

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -x y = 0 \]

[[_Emden, _Fowler]]

9977

\[ {}x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9978

\[ {}2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9979

\[ {}x y^{\prime \prime }+\left (x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9980

\[ {}x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9981

\[ {}2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9982

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9983

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9984

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9985

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9986

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +4 x^{4} y = 0 \]

[[_Emden, _Fowler]]

9987

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

9988

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9989

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9990

\[ {}4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9991

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

9992

\[ {}y^{\prime \prime } = \frac {2 y}{x^{2}} \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

9993

\[ {}y^{\prime \prime } = \frac {6 y}{x^{2}} \]

[[_Emden, _Fowler]]

9994

\[ {}y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 x \left (x -1\right )}\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

9995

\[ {}y^{\prime \prime } = \frac {20 y}{x^{2}} \]

[[_Emden, _Fowler]]

9996

\[ {}y^{\prime \prime } = \frac {12 y}{x^{2}} \]

[[_Emden, _Fowler]]

9997

\[ {}y^{\prime \prime }-\frac {y}{4 x^{2}} = 0 \]

[[_Emden, _Fowler]]

9998

\[ {}x y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

9999

\[ {}y^{\prime \prime }+\frac {y}{x^{2}} = 0 \]

[[_Emden, _Fowler]]

10000

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10001

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10002

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }-x \left (4 x^{2}+3\right ) y^{\prime }+\left (-2 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10003

\[ {}y^{\prime \prime } = \frac {\left (4 x^{6}-8 x^{5}+12 x^{4}+4 x^{3}+7 x^{2}-20 x +4\right ) y}{4 x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

10004

\[ {}y^{\prime \prime } = \left (\frac {6}{x^{2}}-1\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

10005

\[ {}y^{\prime \prime } = \left (\frac {x^{2}}{4}-\frac {11}{2}\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

10006

\[ {}y^{\prime \prime } = \left (\frac {1}{x}-\frac {3}{16 x^{2}}\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

10007

\[ {}y^{\prime \prime } = \left (-\frac {3}{16 x^{2}}-\frac {2}{9 \left (x -1\right )^{2}}+\frac {3}{16 x \left (x -1\right )}\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

10008

\[ {}y^{\prime \prime } = -\frac {\left (5 x^{2}+27\right ) y}{36 \left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

10009

\[ {}y^{\prime \prime } = -\frac {y}{4 x^{2}} \]

[[_Emden, _Fowler]]

10010

\[ {}y^{\prime \prime } = \left (x^{2}+3\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

10011

\[ {}x^{2} y^{\prime \prime } = 2 y \]

[[_2nd_order, _exact, _linear, _homogeneous]]

10012

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10013

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

10014

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11011

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

11012

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

11013

\[ {}y^{\prime \prime }+y-\sin \left (n x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11014

\[ {}y^{\prime \prime }+y-a \cos \left (b x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11015

\[ {}y^{\prime \prime }+y-\sin \left (a x \right ) \sin \left (b x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11016

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

11017

\[ {}y^{\prime \prime }-2 y-4 x^{2} {\mathrm e}^{x^{2}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11018

\[ {}y^{\prime \prime }+a^{2} y-\cot \left (a x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11019

\[ {}y^{\prime \prime }+l y = 0 \]

[[_2nd_order, _missing_x]]

11021

\[ {}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11023

\[ {}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11044

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_2nd_order, _missing_x]]

11045

\[ {}y^{\prime \prime }+a y^{\prime }+b y-f \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11048

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11049

\[ {}y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11052

\[ {}y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[_Hermite]

11054

\[ {}y^{\prime \prime }-y^{\prime } x +\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11056

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11058

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y-{\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11059

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11060

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y-{\mathrm e}^{x^{2}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11065

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11066

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-\left (x +1\right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11067

\[ {}y^{\prime \prime }-x^{2} \left (x +1\right ) y^{\prime }+x \left (x^{4}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11068

\[ {}y^{\prime \prime }+x^{4} y^{\prime }-x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11070

\[ {}y^{\prime \prime }+y^{\prime } \sqrt {x}+\left (\frac {1}{4 \sqrt {x}}+\frac {x}{4}-9\right ) y-x \,{\mathrm e}^{-\frac {x^{{3}/{2}}}{3}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11071

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11073

\[ {}y^{\prime \prime }+a y^{\prime }+\tan \left (x \right )+b y = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11080

\[ {}y^{\prime \prime }+2 a y^{\prime } \cot \left (a x \right )+\left (-a^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11086

\[ {}y^{\prime \prime }+f \left (x \right ) y^{\prime }+\left (\frac {f \left (x \right )^{2}}{4}+\frac {f^{\prime }\left (x \right )}{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11097

\[ {}x \left (y^{\prime \prime }+y\right )-\cos \left (x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11099

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11104

\[ {}x y^{\prime \prime }-y^{\prime }-y a \,x^{3} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11106

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y-{\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11107

\[ {}x y^{\prime \prime }+2 y^{\prime }+y a x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11115

\[ {}x y^{\prime \prime }-y^{\prime } x -y-x \left (x +1\right ) {\mathrm e}^{x} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11117

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

11118

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }-2 \left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11125

\[ {}x y^{\prime \prime }-2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x +2 a b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11127

\[ {}x y^{\prime \prime }-\left (x^{2}-x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11128

\[ {}x y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }-x \left (x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11129

\[ {}x y^{\prime \prime }-\left (2 a \,x^{2}+1\right ) y^{\prime }+b \,x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11131

\[ {}x y^{\prime \prime }+\left (4 x^{2}-1\right ) y^{\prime }-4 x^{3} y-4 x^{5} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11132

\[ {}x y^{\prime \prime }+\left (2 a \,x^{3}-1\right ) y^{\prime }+\left (a^{2} x^{3}+a \right ) x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11133

\[ {}x y^{\prime \prime }+\left (2 a x \ln \left (x \right )+1\right ) y^{\prime }+\left (a^{2} x \ln \left (x \right )^{2}+a \ln \left (x \right )+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11135

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11136

\[ {}2 x y^{\prime \prime }+y^{\prime }+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11139

\[ {}\left (2 x -1\right ) y^{\prime \prime }-\left (3 x -4\right ) y^{\prime }+\left (x -3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11141

\[ {}4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11142

\[ {}4 x y^{\prime \prime }+4 y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11152

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

11153

\[ {}x^{2} y^{\prime \prime }-12 y = 0 \]

[[_Emden, _Fowler]]

11154

\[ {}x^{2} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

11156

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11157

\[ {}x^{2} y^{\prime \prime }-\left (a \,x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11158

\[ {}x^{2} y^{\prime \prime }+\left (a^{2} x^{2}-6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11164

\[ {}x^{2} y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+a b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11165

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y-a \,x^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11166

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11172

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y-3 x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11174

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

11180

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y-x^{5} \ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11181

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y-x \sin \left (x \right )-\left (a \,x^{2}+12 a +4\right ) \cos \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11182

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11183

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{2}}{\cos \left (x \right )} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11184

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y-\frac {x^{3}}{\cos \left (x \right )} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11185

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (a^{2} x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11187

\[ {}x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11188

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y-5 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11189

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x -5 y-x^{2} \ln \left (x \right ) = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11190

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y-x^{4}+x^{2} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11192

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y-\sin \left (x \right ) x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11193

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

11197

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11198

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11199

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (x -9\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11200

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11202

\[ {}x^{2} y^{\prime \prime }-x \left (x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11204

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (3 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11205

\[ {}x^{2} y^{\prime \prime }-x \left (x +4\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11207

\[ {}x^{2} y^{\prime \prime }+x \left (2 x +1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11208

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11209

\[ {}x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11210

\[ {}x^{2} y^{\prime \prime }+\left (a +2 b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) b \,x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11214

\[ {}x^{2} y^{\prime \prime }+x^{3} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11215

\[ {}x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11217

\[ {}x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (4 x^{4}+2 x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11228

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11229

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11230

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11231

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11233

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11234

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11235

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y-2 \cos \left (x \right )+2 x = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11239

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +2 = 0 \]

[[_2nd_order, _missing_y]]

11240

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11242

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

11243

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x -a = 0 \]

[[_2nd_order, _missing_y]]

11247

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-\left (3 x +1\right ) y^{\prime }-\left (x^{2}-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11248

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11252

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 a x y^{\prime }+a \left (a -1\right ) y = 0 \]

[_Gegenbauer]

11255

\[ {}\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11256

\[ {}x \left (x +1\right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11258

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (3 x +2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11259

\[ {}\left (x^{2}+x -2\right ) y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }-\left (6 x^{2}+7 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11267

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x^{2}+x -1\right ) y^{\prime }-\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11268

\[ {}x \left (x +3\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y-\left (20 x +30\right ) \left (x^{2}+3 x \right )^{{7}/{3}} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11269

\[ {}\left (x^{2}+3 x +4\right ) y^{\prime \prime }+\left (x^{2}+x +1\right ) y^{\prime }-\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11271

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-\left (x -2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11272

\[ {}2 x^{2} y^{\prime \prime }-\left (2 x^{2}+l -5 x \right ) y^{\prime }-\left (4 x -1\right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11275

\[ {}\left (2 x^{2}+6 x +4\right ) y^{\prime \prime }+\left (10 x^{2}+21 x +8\right ) y^{\prime }+\left (12 x^{2}+17 x +8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11276

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

11281

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (4 x^{2}+1\right ) y-4 \sqrt {x^{3}}\, {\mathrm e}^{x} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11282

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -\left (a \,x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11284

\[ {}4 x^{2} y^{\prime \prime }+5 y^{\prime } x -y-\ln \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11285

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x -\left (4 x^{2}+12 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11286

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (2 x -1\right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11287

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+6\right ) \left (x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11288

\[ {}4 x^{2} y^{\prime \prime }+4 x^{2} \ln \left (x \right ) y^{\prime }+\left (x^{2} \ln \left (x \right )^{2}+2 x -8\right ) y-4 x^{2} \sqrt {{\mathrm e}^{x} x^{-x}} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

11289

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }-12 y-3 x -1 = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11291

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+3 \left (3 x -1\right ) y^{\prime }-9 y-\ln \left (3 x -1\right )^{2} = 0 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

11292

\[ {}9 x \left (x -1\right ) y^{\prime \prime }+3 \left (2 x -1\right ) y^{\prime }-20 y = 0 \]

[_Jacobi]

11293

\[ {}16 x^{2} y^{\prime \prime }+\left (3+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11294

\[ {}16 x^{2} y^{\prime \prime }+32 y^{\prime } x -\left (5+4 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11295

\[ {}\left (27 x^{2}+4\right ) y^{\prime \prime }+27 y^{\prime } x -3 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11297

\[ {}50 x \left (x -1\right ) y^{\prime \prime }+25 \left (2 x -1\right ) y^{\prime }-2 y = 0 \]

[_Jacobi, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11302

\[ {}\left (a \,x^{2}+1\right ) y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11303

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11304

\[ {}\left (a^{2} x^{2}-1\right ) y^{\prime \prime }+2 a^{2} x y^{\prime }-2 a^{2} y = 0 \]

[_Gegenbauer]

11305

\[ {}\left (a \,x^{2}+b x \right ) y^{\prime \prime }+2 b y^{\prime }-2 a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11308

\[ {}x^{3} y^{\prime \prime }+y^{\prime } x -\left (2 x +3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11311

\[ {}x^{3} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11312

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y-\ln \left (x \right )^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11314

\[ {}x^{3} y^{\prime \prime }+3 x^{2} y^{\prime }+x y-1 = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11316

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+2 \left (x^{2}-1\right ) y^{\prime }-2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11319

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime }+y a \,x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11323

\[ {}x \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime }-6 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

11324

\[ {}x \left (x^{2}-2\right ) y^{\prime \prime }-\left (x^{3}+3 x^{2}-2 x -2\right ) y^{\prime }+\left (x^{2}+4 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11325

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

11326

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+2 x \left (3 x +2\right ) y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

11327

\[ {}y^{\prime \prime } = -\frac {2 \left (x -2\right ) y^{\prime }}{x \left (x -1\right )}+\frac {2 \left (x +1\right ) y}{x^{2} \left (x -1\right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11328

\[ {}y^{\prime \prime } = \frac {\left (5 x -4\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (9 x -6\right ) y}{x^{2} \left (x -1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11330

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x +1}-\frac {y}{x \left (x +1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11332

\[ {}y^{\prime \prime } = \frac {2 y}{x \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11335

\[ {}y^{\prime \prime } = \frac {\left (x -4\right ) y^{\prime }}{2 x \left (x -2\right )}-\frac {\left (x -3\right ) y}{2 x^{2} \left (x -2\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11336

\[ {}y^{\prime \prime } = \frac {y^{\prime }}{x +1}-\frac {\left (3 x +1\right ) y}{4 x^{2} \left (x +1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11340

\[ {}y^{\prime \prime } = -\frac {\left (1-3 x \right ) y}{\left (x -1\right ) \left (2 x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11341

\[ {}y^{\prime \prime } = -\frac {\left (3 x +a +2 b \right ) y^{\prime }}{2 \left (x +a \right ) \left (x +b \right )}-\frac {\left (a -b \right ) y}{4 \left (x +a \right )^{2} \left (x +b \right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11342

\[ {}y^{\prime \prime } = \frac {\left (6 x -1\right ) y^{\prime }}{3 x \left (x -2\right )}+\frac {y}{3 x^{2} \left (x -2\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11344

\[ {}y^{\prime \prime } = \frac {2 \left (a x +2 b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (2 a x +6 b \right ) y}{\left (a x +b \right ) x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11346

\[ {}y^{\prime \prime } = -\frac {a y}{x^{4}} \]

[[_Emden, _Fowler]]

11349

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x^{3}}+\frac {2 y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11350

\[ {}y^{\prime \prime } = \frac {\left (a +b \right ) y^{\prime }}{x^{2}}-\frac {\left (\left (a +b \right ) x +a b \right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11354

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {a^{2} y}{x^{4}} \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11355

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}+\frac {y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11356

\[ {}y^{\prime \prime } = -\frac {2 \left (x +a \right ) y^{\prime }}{x^{2}}-\frac {b y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11357

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11358

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}-1\right ) y^{\prime }}{x^{3}}-\frac {2 y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11359

\[ {}y^{\prime \prime } = -\frac {\left (x^{3}-1\right ) y^{\prime }}{x \left (x^{3}+1\right )}+\frac {x y}{x^{3}+1} \]

[[_2nd_order, _with_linear_symmetries]]

11362

\[ {}y^{\prime \prime } = \frac {\left (x^{2}-2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (x^{2}-2\right ) y}{x^{2} \left (x^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11365

\[ {}y^{\prime \prime } = \frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (a \left (a +1\right )-a \,x^{2} \left (a +3\right )\right ) y}{x^{2} \left (x^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11369

\[ {}y^{\prime \prime } = -\frac {a y}{\left (x^{2}+1\right )^{2}} \]

[_Halm]

11370

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}+1}-\frac {y}{\left (x^{2}+1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11373

\[ {}y^{\prime \prime } = -\frac {a y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11374

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}+\frac {a^{2} y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11380

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+a \right ) y^{\prime }}{x \left (x^{2}+a \right )}-\frac {b y}{x^{2} \left (x^{2}+a \right )} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

11381

\[ {}y^{\prime \prime } = -\frac {b^{2} y}{\left (a^{2}+x^{2}\right )^{2}} \]

[[_Emden, _Fowler]]

11382

\[ {}y^{\prime \prime } = -\frac {2 \left (x^{2}-1\right ) y^{\prime }}{x \left (x -1\right )^{2}}-\frac {\left (-2 x^{2}+2 x +2\right ) y}{x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11383

\[ {}y^{\prime \prime } = \frac {12 y}{\left (x +1\right )^{2} \left (x^{2}+2 x +3\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11384

\[ {}y^{\prime \prime } = -\frac {b y}{x^{2} \left (x -a \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11385

\[ {}y^{\prime \prime } = -\frac {b y}{x^{2} \left (x -a \right )^{2}}+c \]

[[_2nd_order, _linear, _nonhomogeneous]]

11386

\[ {}y^{\prime \prime } = \frac {c y}{\left (x -a \right )^{2} \left (x -b \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11387

\[ {}y^{\prime \prime } = -\frac {\left (\left (\alpha +\beta +1\right ) \left (x -a \right )^{2} \left (x -b \right )+\left (1-\alpha -\beta \right ) \left (x -b \right )^{2} \left (x -a \right )\right ) y^{\prime }}{\left (x -a \right )^{2} \left (x -b \right )^{2}}-\frac {\alpha \beta \left (a -b \right )^{2} y}{\left (x -a \right )^{2} \left (x -b \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11389

\[ {}y^{\prime \prime } = -\frac {\left (a \,x^{2}+a -3\right ) y}{4 \left (x^{2}+1\right )^{2}} \]

[_Halm]

11390

\[ {}y^{\prime \prime } = \frac {18 y}{\left (2 x +1\right )^{2} \left (x^{2}+x +1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

11391

\[ {}y^{\prime \prime } = \frac {3 y}{4 \left (x^{2}+x +1\right )^{2}} \]

[[_Emden, _Fowler]]

11394

\[ {}y^{\prime \prime } = -\frac {3 y}{16 x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11398

\[ {}y^{\prime \prime } = -\frac {2 y^{\prime }}{x}-\frac {c y}{x^{2} \left (a x +b \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11399

\[ {}y^{\prime \prime } = -\frac {y}{\left (a x +b \right )^{4}} \]

[[_Emden, _Fowler]]

11400

\[ {}y^{\prime \prime } = -\frac {A y}{\left (a \,x^{2}+b x +c \right )^{2}} \]

[[_Emden, _Fowler]]

11401

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x^{4}}+\frac {y}{x^{5}} \]

[[_2nd_order, _with_linear_symmetries]]

11403

\[ {}y^{\prime \prime } = \frac {\left (3 x +1\right ) y^{\prime }}{\left (x -1\right ) \left (x +1\right )}-\frac {36 \left (x +1\right )^{2} y}{\left (x -1\right )^{2} \left (3 x +5\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11408

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (-2 x^{2}+1\right ) y}{4 x^{6}} \]

[[_2nd_order, _with_linear_symmetries]]

11409

\[ {}y^{\prime \prime } = \frac {\left (2 x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {\left (a \,x^{4}+10 x^{2}+1\right ) y}{4 x^{6}} \]

[[_2nd_order, _with_linear_symmetries]]

11410

\[ {}y^{\prime \prime } = -\frac {27 x y}{16 \left (x^{3}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11425

\[ {}y^{\prime \prime } = -\frac {a \left (n -1\right ) \sin \left (2 a x \right ) y^{\prime }}{\cos \left (a x \right )^{2}}-\frac {n \,a^{2} \left (\left (n -1\right ) \sin \left (a x \right )^{2}+\cos \left (a x \right )^{2}\right ) y}{\cos \left (a x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

11449

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (x -1\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11450

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (-x -1\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

11451

\[ {}y^{\prime \prime } = -\frac {b^{2} y}{\left (-a^{2}+x^{2}\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

12501

\[ {}y^{\prime \prime }+a y = 0 \]

[[_2nd_order, _missing_x]]

12503

\[ {}y^{\prime \prime }-\left (a^{2} x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12505

\[ {}y^{\prime \prime }+a^{3} x \left (-a x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12511

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

[[_2nd_order, _missing_x]]

12514

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2}+a x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12515

\[ {}y^{\prime \prime }+a y^{\prime }+b x \left (-b \,x^{3}+a x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12524

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }-a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12525

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12526

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (a x +b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12527

\[ {}y^{\prime \prime }+\left (a x +2 b \right ) y^{\prime }+\left (a b x +b^{2}-a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12530

\[ {}y^{\prime \prime }+2 \left (a x +b \right ) y^{\prime }+\left (a^{2} x^{2}+2 a b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12533

\[ {}y^{\prime \prime }+a \left (-b^{2}+x^{2}\right ) y^{\prime }-a \left (x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12534

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (a \,x^{2}+b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12535

\[ {}y^{\prime \prime }+\left (a \,x^{2}+2 b \right ) y^{\prime }+\left (a b \,x^{2}-a x +b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12536

\[ {}y^{\prime \prime }+\left (2 x^{2}+a \right ) y^{\prime }+\left (x^{4}+a \,x^{2}+b +2 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12538

\[ {}y^{\prime \prime }+\left (a b \,x^{2}+b x +2 a \right ) y^{\prime }+a^{2} \left (b \,x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12539

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+x \left (a b \,x^{2}+b c +2 a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12540

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (a b \,x^{3}+a c \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12541

\[ {}y^{\prime \prime }+\left (a \,x^{3}+2 b \right ) y^{\prime }+\left (a b \,x^{3}-a \,x^{2}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12542

\[ {}y^{\prime \prime }+\left (a \,x^{3}+b x \right ) y^{\prime }+2 \left (2 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12543

\[ {}y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+2 a \right ) y^{\prime }+a^{2} \left (b \,x^{3}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12561

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+a y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12569

\[ {}x y^{\prime \prime }+a x y^{\prime }+a y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12572

\[ {}x y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a \left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12575

\[ {}x y^{\prime \prime }-\left (a x +1\right ) y^{\prime }-b \,x^{2} \left (b x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12576

\[ {}x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+\left (b \,x^{3}+a^{2} x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12580

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }-\left (a c \,x^{2}+\left (b c +c^{2}+a \right ) x +b +2 c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12581

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +2\right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12587

\[ {}x y^{\prime \prime }+x \left (a \,x^{2}+b \right ) y^{\prime }+\left (3 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12588

\[ {}x y^{\prime \prime }+\left (a \,x^{3}+b \,x^{2}+2\right ) y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12589

\[ {}x y^{\prime \prime }+\left (a b \,x^{3}+b \,x^{2}+a x -1\right ) y^{\prime }+a^{2} b \,x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12610

\[ {}x^{2} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

12616

\[ {}x^{2} y^{\prime \prime }-\left (a \,x^{3}+\frac {5}{16}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12623

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

12628

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -\left (a^{2} x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12629

\[ {}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12630

\[ {}x^{2} y^{\prime \prime }-2 a x y^{\prime }+\left (-b^{2} x^{2}+a \left (a +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12640

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+\left (a b -1\right ) x +b \right ) y^{\prime }+a^{2} b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12651

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x +a y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12652

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +n^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12655

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-3 y^{\prime } x +n \left (n +2\right ) y = 0 \]

[_Gegenbauer]

12662

\[ {}\left (a \,x^{2}+b \right ) y^{\prime \prime }+a x y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12664

\[ {}\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12665

\[ {}\left (a^{2}+x^{2}\right ) y^{\prime \prime }+2 b x y^{\prime }+b \left (b -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12674

\[ {}\left (2 a x +x^{2}+b \right ) y^{\prime \prime }+\left (x +a \right ) y^{\prime }-m^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12677

\[ {}\left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12678

\[ {}\left (a \,x^{2}+2 b x +c \right ) y^{\prime \prime }+3 \left (a x +b \right ) y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12689

\[ {}x \left (a \,x^{2}+b \right ) y^{\prime \prime }+2 \left (a \,x^{2}+b \right ) y^{\prime }-2 y a x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

12692

\[ {}x^{2} \left (a x +b \right ) y^{\prime \prime }-2 x \left (a x +2 b \right ) y^{\prime }+2 \left (a x +3 b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12693

\[ {}x^{2} \left (a x +b \right ) y^{\prime \prime }+\left (a \left (2-n -m \right ) x^{2}-b \left (n +m \right ) x \right ) y^{\prime }+\left (a m \left (n -1\right ) x +b n \left (m +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12711

\[ {}x^{4} y^{\prime \prime }+a y = 0 \]

[[_Emden, _Fowler]]

12713

\[ {}x^{4} y^{\prime \prime }-\left (a +b \right ) x^{2} y^{\prime }+\left (\left (a +b \right ) x +a b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12714

\[ {}x^{4} y^{\prime \prime }+2 x^{2} \left (x +a \right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12716

\[ {}x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12717

\[ {}x^{2} \left (x -a \right )^{2} y^{\prime \prime }+b y = c \,x^{2} \left (x -a \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12720

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+a y = 0 \]

[_Halm]

12721

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12722

\[ {}\left (a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y = 0 \]

[[_Emden, _Fowler]]

12723

\[ {}\left (-a^{2}+x^{2}\right )^{2} y^{\prime \prime }+b^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12724

\[ {}4 \left (x^{2}+1\right )^{2} y^{\prime \prime }+\left (a \,x^{2}+a -3\right ) y = 0 \]

[_Halm]

12725

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+2 a x \left (a \,x^{2}+b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12729

\[ {}\left (a \,x^{2}+b \right )^{2} y^{\prime \prime }+\left (2 a x +c \right ) \left (a \,x^{2}+b \right ) y^{\prime }+k y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12733

\[ {}\left (x -a \right )^{2} \left (x -b \right )^{2} y^{\prime \prime }-c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12734

\[ {}\left (x -a \right )^{2} \left (x -b \right )^{2} y^{\prime \prime }+\left (x -a \right ) \left (x -b \right ) \left (2 x +\lambda \right ) y^{\prime }+\mu y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12735

\[ {}\left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+A y = 0 \]

[[_Emden, _Fowler]]

12738

\[ {}\left (a \,x^{2}+b x +c \right )^{2} y^{\prime \prime }+\left (2 a x +k \right ) \left (a \,x^{2}+b x +c \right ) y^{\prime }+m y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12777

\[ {}y^{\prime \prime }+2 a \,{\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{\lambda x}+\lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12919

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

12920

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

12930

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12932

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12933

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

12935

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12937

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12938

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12939

\[ {}y^{\prime \prime }+4 y = x^{2}+\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12940

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}-\sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12941

\[ {}y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x \]

[[_2nd_order, _linear, _nonhomogeneous]]

12942

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{2 x}-\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12946

\[ {}y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1 \]

[[_2nd_order, _missing_y]]

12950

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

12951

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-\left (x +1\right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

12952

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \cos \left (x \right )-{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12954

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{3}-x \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12959

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12960

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12962

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

12965

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

[[_2nd_order, _with_linear_symmetries]]

12966

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y = x^{2}-x -1 \]

[[_2nd_order, _with_linear_symmetries]]

12967

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12968

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

12969

\[ {}\sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y = {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12970

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12972

\[ {}x y^{\prime \prime }+2 y^{\prime }-x y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12974

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +4 y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

12976

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12977

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-8 x^{3} y = 4 x^{3} {\mathrm e}^{-x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

12978

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

[_Laguerre]

12979

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12980

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +\left (-x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12981

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12982

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12983

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12984

\[ {}\left (2 x^{3}-1\right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

12985

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

12990

\[ {}y^{\prime \prime }+y^{\prime } x = x \]

[[_2nd_order, _missing_y]]

12991

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

13000

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13001

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 \left (x -1\right ) y^{\prime }+2 y = \cos \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13004

\[ {}x^{5} y^{\prime \prime }+\left (2 x^{4}-x \right ) y^{\prime }-\left (2 x^{3}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13013

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

13016

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (4 x +2\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13018

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

13021

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-\frac {y^{\prime }}{x}+x^{2} = 0 \]

[[_2nd_order, _missing_y]]

13028

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

[[_2nd_order, _missing_x]]

13032

\[ {}t^{2} x^{\prime \prime }-6 x = 0 \]

[[_Emden, _Fowler]]

13033

\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

[[_2nd_order, _missing_x]]

13038

\[ {}x^{\prime \prime } = -3 \sqrt {t} \]
i.c.

[[_2nd_order, _quadrature]]

13043

\[ {}x^{\prime }+t x^{\prime \prime } = 1 \]
i.c.

[[_2nd_order, _missing_y]]

13072

\[ {}\frac {x^{\prime }+t x^{\prime \prime }}{t} = -2 \]

[[_2nd_order, _missing_y]]

13096

\[ {}x^{\prime \prime }+x^{\prime } = 3 t \]

[[_2nd_order, _missing_y]]

13112

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13113

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13114

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13115

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13116

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13117

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13118

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13119

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13120

\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13121

\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13122

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13123

\[ {}x^{\prime \prime }-12 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13124

\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13125

\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13126

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13127

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13128

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

13129

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13130

\[ {}x^{\prime \prime }+x^{\prime }+x = 12 \]

[[_2nd_order, _missing_x]]

13131

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13132

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13133

\[ {}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13134

\[ {}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13135

\[ {}x^{\prime \prime }+x^{\prime }+x = \left (t +2\right ) \sin \left (\pi t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13136

\[ {}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

13137

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13138

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 t \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13139

\[ {}x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13140

\[ {}x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13141

\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \]

[[_2nd_order, _missing_y]]

13142

\[ {}x^{\prime \prime }+x = t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13143

\[ {}x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13144

\[ {}x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

13145

\[ {}x^{\prime \prime }-4 x = \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13146

\[ {}x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13147

\[ {}x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13148

\[ {}x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13149

\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \]
i.c.

[[_2nd_order, _missing_x]]

13150

\[ {}x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13151

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x = \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13152

\[ {}x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13153

\[ {}x^{\prime \prime }+3025 x = \cos \left (45 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13154

\[ {}x^{\prime \prime } = -\frac {x}{t^{2}} \]

[[_Emden, _Fowler]]

13155

\[ {}x^{\prime \prime } = \frac {4 x}{t^{2}} \]

[[_Emden, _Fowler]]

13156

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13157

\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13158

\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

[[_Emden, _Fowler]]

13159

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13160

\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

13161

\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13162

\[ {}x^{\prime \prime }+t^{2} x^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_y]]

13163

\[ {}x^{\prime \prime }+x = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13164

\[ {}x^{\prime \prime }-x = t \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13165

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13166

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13167

\[ {}x^{\prime \prime }+x = \frac {1}{1+t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13168

\[ {}x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13169

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

[[_2nd_order, _missing_y]]

13170

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

[[_2nd_order, _with_linear_symmetries]]

13171

\[ {}x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13247

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

13248

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13249

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13254

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

13259

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = -8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13261

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13264

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13267

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13389

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13390

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13392

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

13393

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13394

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13395

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13396

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

13405

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13406

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2-12 x +6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

13407

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

13408

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

13409

\[ {}4 y^{\prime \prime }-12 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

13410

\[ {}3 y^{\prime \prime }-14 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

13413

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

13414

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

13415

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

13416

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

13417

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

13418

\[ {}4 y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

13431

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13432

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13433

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13434

\[ {}3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13435

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13436

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13437

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13438

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13439

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13440

\[ {}y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13441

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13442

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13443

\[ {}9 y^{\prime \prime }+6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13444

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13451

\[ {}y^{\prime \prime }-3 y^{\prime }+8 y = 4 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13452

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 4 \,{\mathrm e}^{2 x}-21 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13453

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 6 \sin \left (2 x \right )+7 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13454

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 10 \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13455

\[ {}y^{\prime \prime }+2 y^{\prime }+4 y = \cos \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13456

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 16 x -12 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

13457

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = 2 \,{\mathrm e}^{x}+10 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13458

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 5 x \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13463

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 10 \,{\mathrm e}^{2 x}-18 \,{\mathrm e}^{3 x}-6 x -11 \]

[[_2nd_order, _linear, _nonhomogeneous]]

13464

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 6 \,{\mathrm e}^{-2 x}+3 \,{\mathrm e}^{x}-4 x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13471

\[ {}y^{\prime \prime }+y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13472

\[ {}y^{\prime \prime }+4 y = 12 x^{2}-16 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13475

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 9 x^{2}+4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13476

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 16 x +20 \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13477

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 9 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13478

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 4 x \,{\mathrm e}^{-3 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13479

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 8 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13480

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 27 \,{\mathrm e}^{-6 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13481

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 18 \,{\mathrm e}^{-2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13482

\[ {}y^{\prime \prime }-10 y^{\prime }+29 y = 8 \,{\mathrm e}^{5 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13483

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 8 \sin \left (3 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13484

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 8 \,{\mathrm e}^{2 x}-5 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13485

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13486

\[ {}y^{\prime \prime }-y = 3 x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13487

\[ {}y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13488

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13491

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13492

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13493

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \left (1+\cos \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13494

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = x^{4} {\mathrm e}^{x}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13495

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13505

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13506

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13507

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13508

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13509

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13510

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13511

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13512

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13513

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13514

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13515

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13516

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13517

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13518

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{{\mathrm e}^{2 x}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13519

\[ {}y^{\prime \prime }+y = \frac {1}{1+\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13520

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13521

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13522

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13523

\[ {}x^{2} y^{\prime \prime }-6 y^{\prime } x +10 y = 3 x^{4}+6 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13524

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

13525

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = \left (x +2\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13526

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

13527

\[ {}x \left (x -2\right ) y^{\prime \prime }-\left (x^{2}-2\right ) y^{\prime }+2 \left (x -1\right ) y = 3 x^{2} \left (x -2\right )^{2} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13528

\[ {}\left (2 x +1\right ) \left (x +1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y = \left (2 x +1\right )^{2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13531

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

13532

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13533

\[ {}4 x^{2} y^{\prime \prime }-4 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13534

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13535

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13536

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]

[[_Emden, _Fowler]]

13537

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13538

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13539

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13540

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

13544

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 4 x -6 \]

[[_2nd_order, _with_linear_symmetries]]

13545

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

13546

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 4 \ln \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13547

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 2 x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

13548

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 4 \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13550

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13551

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13552

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13553

\[ {}x^{2} y^{\prime \prime }-2 y = 4 x -8 \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13554

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +4 y = -6 x^{3}+4 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13555

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 10 x^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13556

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 2 x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13557

\[ {}x^{2} y^{\prime \prime }-6 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

13558

\[ {}\left (x +2\right )^{2} y^{\prime \prime }-\left (x +2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13559

\[ {}\left (2 x -3\right )^{2} y^{\prime \prime }-6 \left (2 x -3\right ) y^{\prime }+12 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13662

\[ {}t x^{\prime \prime }-2 x^{\prime }+9 t^{5} x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13664

\[ {}\left (t^{3}-2 t^{2}\right ) x^{\prime \prime }-\left (t^{3}+2 t^{2}-6 t \right ) x^{\prime }+\left (3 t^{2}-6\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13666

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+3 x = 0 \]

[[_Emden, _Fowler]]

13668

\[ {}t^{2} x^{\prime \prime }+\left (2 t^{3}+7 t \right ) x^{\prime }+\left (8 t^{2}+8\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13669

\[ {}t^{3} x^{\prime \prime }-\left (t^{3}+2 t^{2}-t \right ) x^{\prime }+\left (t^{2}+t -1\right ) x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13672

\[ {}\frac {\left (1+t \right ) x^{\prime \prime }}{t}-\frac {x^{\prime }}{t^{2}}+\frac {x}{t^{3}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13673

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13678

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13679

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13680

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13681

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13682

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13683

\[ {}x y^{\prime \prime }+y^{\prime }+\frac {\lambda y}{x} = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13684

\[ {}2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }+\frac {\lambda y}{x^{2}+1} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13685

\[ {}-\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13750

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13751

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13752

\[ {}z^{\prime \prime }-4 z^{\prime }+13 z = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13753

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13754

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13755

\[ {}\theta ^{\prime \prime }+4 \theta = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13756

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13757

\[ {}2 z^{\prime \prime }+7 z^{\prime }-4 z = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13758

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13759

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13760

\[ {}4 x^{\prime \prime }-20 x^{\prime }+21 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13761

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13762

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13763

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13764

\[ {}y^{\prime \prime }+\omega ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

13765

\[ {}x^{\prime \prime }-4 x = t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13766

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

[[_2nd_order, _missing_y]]

13767

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

13768

\[ {}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

13769

\[ {}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

13770

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13771

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13772

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

13773

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13774

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13775

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

13776

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13777

\[ {}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13778

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13779

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\omega t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

13790

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

13791

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13792

\[ {}y^{\prime \prime }+4 y = \cot \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13793

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13794

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]

[[_2nd_order, _missing_y]]

13796

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

13797

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]
i.c.

[[_Emden, _Fowler]]

13798

\[ {}t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13799

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13800

\[ {}x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0 \]
i.c.

[[_Emden, _Fowler]]

13801

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13802

\[ {}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13803

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

13804

\[ {}3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

13805

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]
i.c.

[[_Emden, _Fowler]]

13806

\[ {}a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

13900

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]
i.c.

[[_2nd_order, _missing_x]]

13901

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13903

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13904

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 2 \]

[[_2nd_order, _with_linear_symmetries]]

13905

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13907

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

13918

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13919

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

13922

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13923

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13925

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13926

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

13931

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 2 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13935

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13941

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13972

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

13973

\[ {}y^{\prime \prime } = y+x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

13980

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

13982

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

13990

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13993

\[ {}y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

13995

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13996

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

13997

\[ {}y^{\prime \prime }+4 y^{\prime } x +\left (4 x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

13999

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14001

\[ {}x y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14004

\[ {}x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14011

\[ {}y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

14012

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

[[_2nd_order, _with_linear_symmetries]]

14013

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x +1}-\frac {\left (x +2\right ) y}{x^{2} \left (x +1\right )} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

14014

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

14015

\[ {}\frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (3 x +1\right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

14018

\[ {}y^{\prime \prime }+\left (2 x +5\right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14087

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = t^{7} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

14092

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1 \]

[[_2nd_order, _missing_x]]

14093

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

14094

\[ {}y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]

[[_2nd_order, _missing_x]]

14096

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

14132

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14133

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14134

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

14135

\[ {}y^{\prime \prime }+y = f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14136

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

14137

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

14149

\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

14150

\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

14151

\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

[[_2nd_order, _missing_x]]

14159

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

14160

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14161

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

14228

\[ {}y^{\prime \prime } = a^{2} y \]

[[_2nd_order, _missing_x]]

14230

\[ {}x y^{\prime \prime }-y^{\prime } = x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _missing_y]]

14237

\[ {}y^{\prime \prime } = 9 y \]

[[_2nd_order, _missing_x]]

14238

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14239

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

14240

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

[[_2nd_order, _missing_x]]

14241

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

14242

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

14243

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

14244

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

14245

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14254

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \]

[[_2nd_order, _with_linear_symmetries]]

14255

\[ {}s^{\prime \prime }-a^{2} s = 1+t \]

[[_2nd_order, _with_linear_symmetries]]

14256

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14257

\[ {}y^{\prime \prime }-y = 5 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

14258

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

14259

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

14260

\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

14261

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

[[_2nd_order, _missing_y]]

14262

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = {\mathrm e}^{-x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14263

\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14267

\[ {}y^{\prime \prime }+2 h y^{\prime }+n^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14268

\[ {}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14269

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14270

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14271

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{{3}/{2}}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14278

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14281

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14310

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14312

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14313

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

14314

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14320

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_Emden, _Fowler]]

14323

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 0 \]

[[_2nd_order, _missing_x]]

14324

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14327

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14328

\[ {}x^{2} y^{\prime \prime }+6 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

14329

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

14335

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

14337

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

14340

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14341

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14342

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14343

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14345

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14346

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14347

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14348

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14349

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

14480

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14482

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

14483

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

14486

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

14487

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

14488

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler]]

14490

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14492

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

14493

\[ {}y^{\prime \prime }-4 y = 31 \]
i.c.

[[_2nd_order, _missing_x]]

14494

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14495

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -4 y = -3 x -\frac {3}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14496

\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

14506

\[ {}y^{\prime \prime }+\alpha y = 0 \]

[[_2nd_order, _missing_x]]

14862

\[ {}y^{\prime \prime }-6 y^{\prime }-7 y = 0 \]

[[_2nd_order, _missing_x]]

14863

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

14893

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14894

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14895

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14896

\[ {}y^{\prime \prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

14897

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{4 t} \]

[[_2nd_order, _with_linear_symmetries]]

14898

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \,{\mathrm e}^{-3 t} \]

[[_2nd_order, _with_linear_symmetries]]

14899

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{3 t} \]

[[_2nd_order, _with_linear_symmetries]]

14900

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

14901

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

14902

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

14903

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{4 t} \]

[[_2nd_order, _with_linear_symmetries]]

14904

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 4 \,{\mathrm e}^{-3 t} \]

[[_2nd_order, _with_linear_symmetries]]

14905

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14906

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14907

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14908

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14909

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14910

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14911

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14912

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14913

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14914

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14915

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

14916

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 5 \]
i.c.

[[_2nd_order, _missing_x]]

14917

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 2 \]
i.c.

[[_2nd_order, _missing_x]]

14918

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 10 \]
i.c.

[[_2nd_order, _missing_x]]

14919

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = -8 \]
i.c.

[[_2nd_order, _missing_x]]

14920

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14921

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14922

\[ {}y^{\prime \prime }+2 y = -3 \]
i.c.

[[_2nd_order, _missing_x]]

14923

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14924

\[ {}y^{\prime \prime }+9 y = 6 \]
i.c.

[[_2nd_order, _missing_x]]

14925

\[ {}y^{\prime \prime }+2 y = -{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14926

\[ {}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14927

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

14928

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]
i.c.

[[_2nd_order, _missing_y]]

14929

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14930

\[ {}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14931

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14932

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14933

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14934

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14935

\[ {}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

14936

\[ {}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14937

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14938

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14939

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14940

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14941

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14942

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14943

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14944

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14945

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14946

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14947

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14948

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14949

\[ {}y^{\prime \prime }+6 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14950

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

14951

\[ {}y^{\prime \prime }+3 y^{\prime }+y = \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14952

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 3+2 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14953

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-t} \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14954

\[ {}y^{\prime \prime }+9 y = \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14955

\[ {}y^{\prime \prime }+9 y = 5 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14956

\[ {}y^{\prime \prime }+4 y = -\cos \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14957

\[ {}y^{\prime \prime }+4 y = 3 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14958

\[ {}y^{\prime \prime }+9 y = 2 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

14984

\[ {}y^{\prime \prime } = \frac {x +1}{x -1} \]

[[_2nd_order, _quadrature]]

14985

\[ {}x^{2} y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

14987

\[ {}y^{\prime \prime }+3 y^{\prime }+8 y = {\mathrm e}^{-x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

14988

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

14998

\[ {}y^{\prime \prime } = \sin \left (2 x \right ) \]

[[_2nd_order, _quadrature]]

14999

\[ {}y^{\prime \prime }-3 = x \]

[[_2nd_order, _quadrature]]

15007

\[ {}x y^{\prime \prime }+2 = \sqrt {x} \]
i.c.

[[_2nd_order, _quadrature]]

15209

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

[[_2nd_order, _missing_y]]

15210

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

[[_2nd_order, _missing_y]]

15211

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

15212

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _missing_y]]

15213

\[ {}x y^{\prime \prime } = y^{\prime }-2 x^{2} y^{\prime } \]

[[_2nd_order, _missing_y]]

15214

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

15221

\[ {}y^{\prime \prime } = 2 y^{\prime }-6 \]

[[_2nd_order, _missing_x]]

15223

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

15231

\[ {}y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

15237

\[ {}x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

[[_2nd_order, _missing_y]]

15241

\[ {}y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

15243

\[ {}x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]
i.c.

[[_2nd_order, _missing_y]]

15244

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]
i.c.

[[_2nd_order, _missing_y]]

15245

\[ {}y^{\prime \prime } = y^{\prime } \]
i.c.

[[_2nd_order, _missing_x]]

15246

\[ {}y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _missing_y]]

15249

\[ {}x y^{\prime \prime }+2 y^{\prime } = 6 \]
i.c.

[[_2nd_order, _missing_y]]

15269

\[ {}y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15296

\[ {}y^{\prime \prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15297

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15298

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15299

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15300

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15301

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15302

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

15303

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15304

\[ {}\left (x +1\right )^{2} y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15305

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15306

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15309

\[ {}y^{\prime \prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15310

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15311

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15312

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15315

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

15316

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

[[_2nd_order, _missing_x]]

15317

\[ {}y^{\prime \prime }-25 y = 0 \]

[[_2nd_order, _missing_x]]

15318

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15319

\[ {}4 y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

15320

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

15321

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15322

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15323

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15324

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15325

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15326

\[ {}y^{\prime \prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15327

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

15328

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15329

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15330

\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15331

\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

15332

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

15333

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15334

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15335

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15336

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15337

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15338

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15339

\[ {}y^{\prime \prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

15340

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

15341

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

15342

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

[[_2nd_order, _missing_x]]

15343

\[ {}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

15344

\[ {}4 y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15345

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15346

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15347

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15348

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15349

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15350

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15351

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15352

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15379

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15380

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15381

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

15382

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15383

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

15384

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

15385

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

15386

\[ {}x^{2} y^{\prime \prime }-19 y^{\prime } x +100 y = 0 \]

[[_Emden, _Fowler]]

15387

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +29 y = 0 \]

[[_Emden, _Fowler]]

15388

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

15389

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +29 y = 0 \]

[[_Emden, _Fowler]]

15390

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15391

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

15392

\[ {}4 x^{2} y^{\prime \prime }+37 y = 0 \]

[[_Emden, _Fowler]]

15393

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

15394

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -25 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15395

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

15396

\[ {}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

15397

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -10 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15398

\[ {}4 x^{2} y^{\prime \prime }+4 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15399

\[ {}x^{2} y^{\prime \prime }-11 y^{\prime } x +36 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15400

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

15401

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15402

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +13 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15411

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15412

\[ {}y^{\prime \prime }+4 y = 24 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15413

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15414

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15415

\[ {}y^{\prime \prime }-9 y = 36 \]
i.c.

[[_2nd_order, _missing_x]]

15416

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15417

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15418

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15419

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 10 x +12 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15421

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

15422

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

15423

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15424

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15425

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

15426

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15427

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 22 x +24 \]

[[_2nd_order, _with_linear_symmetries]]

15428

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15429

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15430

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

15431

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 4 x^{2}+2 x +3 \]

[[_2nd_order, _with_linear_symmetries]]

15432

\[ {}y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

15433

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x} \]

[[_2nd_order, _with_linear_symmetries]]

15434

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x} \]

[[_2nd_order, _with_linear_symmetries]]

15435

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

[[_2nd_order, _missing_y]]

15436

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -5 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15437

\[ {}y^{\prime \prime }+9 y = 10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15438

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 25 \sin \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15439

\[ {}y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

[[_2nd_order, _missing_y]]

15440

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15441

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -4 \cos \left (x \right )+7 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15442

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -200 \]

[[_2nd_order, _missing_x]]

15443

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15444

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 18 x^{2}+3 x +4 \]

[[_2nd_order, _with_linear_symmetries]]

15445

\[ {}y^{\prime \prime }+9 y = 9 x^{4}-9 \]

[[_2nd_order, _linear, _nonhomogeneous]]

15446

\[ {}y^{\prime \prime }+9 y = x^{3} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15447

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15448

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15449

\[ {}y^{\prime \prime }+9 y = 54 x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15450

\[ {}y^{\prime \prime } = 6 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

15451

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15452

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left (12 x -4\right ) {\mathrm e}^{-5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15453

\[ {}y^{\prime \prime }+9 y = 39 x \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

15454

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = -3 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

15455

\[ {}y^{\prime \prime }+4 y^{\prime } = 20 \]

[[_2nd_order, _missing_x]]

15456

\[ {}y^{\prime \prime }+4 y^{\prime } = x^{2} \]

[[_2nd_order, _missing_y]]

15457

\[ {}y^{\prime \prime }+9 y = 3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15458

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 10 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15459

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = \left (72 x^{2}-1\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15460

\[ {}y^{\prime \prime }-3 y^{\prime }-10 y = 4 x \,{\mathrm e}^{6 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15461

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

15462

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{-5 x} \]

[[_2nd_order, _with_linear_symmetries]]

15463

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 24 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15464

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 8 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15465

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15466

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15467

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 100 \]

[[_2nd_order, _missing_x]]

15468

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

15469

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 10 x^{2}+4 x +8 \]

[[_2nd_order, _with_linear_symmetries]]

15470

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15471

\[ {}y^{\prime \prime }+y = 6 \cos \left (x \right )-3 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15472

\[ {}y^{\prime \prime }+y = 6 \cos \left (2 x \right )-3 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15473

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{-x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15474

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15475

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15476

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15477

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{-8 x} \]

[[_2nd_order, _with_linear_symmetries]]

15478

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15479

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15480

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15481

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15482

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{4 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15483

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{2 x} \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15484

\[ {}y^{\prime \prime }-4 y^{\prime }+20 y = x^{3} \sin \left (4 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15485

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{2} {\mathrm e}^{5 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15486

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15501

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15502

\[ {}y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15503

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 5 \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15504

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 20 \sinh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15505

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +8 y = \frac {5}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

15506

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x +y = \frac {50}{x^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

15507

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15508

\[ {}x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15509

\[ {}3 x^{2} y^{\prime \prime }-7 y^{\prime } x +3 y = 4 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15510

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = \frac {10}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15511

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 6 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15512

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 64 x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15513

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

15514

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15515

\[ {}y^{\prime \prime }+4 y = \csc \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15516

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 6 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15517

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \left (24 x^{2}+2\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15518

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15519

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \sqrt {x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15520

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 12 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

15521

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15522

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

15523

\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{x -2} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15524

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15525

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15526

\[ {}\left (x +1\right ) y^{\prime \prime }+y^{\prime } x -y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15527

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = \frac {10}{x} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15528

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 12 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15535

\[ {}y^{\prime \prime }+36 y = 0 \]

[[_2nd_order, _missing_x]]

15536

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

[[_2nd_order, _missing_x]]

15537

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15538

\[ {}y^{\prime \prime }-36 y = 0 \]

[[_2nd_order, _missing_x]]

15539

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

[[_2nd_order, _missing_x]]

15540

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_Emden, _Fowler]]

15541

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

[[_2nd_order, _missing_y]]

15543

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

15544

\[ {}y^{\prime \prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

15545

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

15546

\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

[[_Emden, _Fowler]]

15548

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

[[_Emden, _Fowler]]

15549

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

15551

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15552

\[ {}y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

15553

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -30 y = 0 \]

[[_Emden, _Fowler]]

15554

\[ {}y^{\prime \prime }+y^{\prime }-30 y = 0 \]

[[_2nd_order, _missing_x]]

15555

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

15556

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

15558

\[ {}2 x^{2} y^{\prime \prime }-3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15559

\[ {}9 x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15561

\[ {}2 y^{\prime \prime }-7 y^{\prime }+3 = 0 \]

[[_2nd_order, _missing_x]]

15562

\[ {}y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

[[_2nd_order, _missing_x]]

15563

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

[[_2nd_order, _missing_y]]

15564

\[ {}y^{\prime \prime }-5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15565

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 98 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15566

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 25 \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15567

\[ {}y^{\prime \prime }-9 y^{\prime }+14 y = 576 x^{2} {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15568

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 81 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15569

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -9 y = 3 \sqrt {x} \]

[[_2nd_order, _with_linear_symmetries]]

15570

\[ {}y^{\prime \prime }-12 y^{\prime }+36 y = 3 x \,{\mathrm e}^{6 x}-2 \,{\mathrm e}^{6 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15571

\[ {}y^{\prime \prime }+36 y = 6 \sec \left (6 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15572

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 18 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

15573

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

15574

\[ {}2 x^{2} y^{\prime \prime }-y^{\prime } x -2 y = 10 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

15575

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 2 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15577

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

15578

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = \frac {1}{x^{2}+1} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15579

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = x \,{\mathrm e}^{\frac {3 x}{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15580

\[ {}3 y^{\prime \prime }+8 y^{\prime }-3 y = 123 x \sin \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15583

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (x +1\right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15584

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

15781

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

15785

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

15793

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

15794

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

15795

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

[[_2nd_order, _missing_x]]

15796

\[ {}x^{\prime \prime }+x = t \cos \left (t \right )-\cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

15797

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

[[_2nd_order, _missing_x]]

15800

\[ {}x^{2} y^{\prime \prime }-12 y^{\prime } x +42 y = 0 \]

[[_Emden, _Fowler]]

15801

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

15822

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15823

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

15826

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15827

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

15835

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

[[_2nd_order, _missing_x]]

15844

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

15845

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

[[_2nd_order, _missing_x]]

15846

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler]]

15847

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

15848

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \]

[[_2nd_order, _with_linear_symmetries]]

15849

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]

[[_2nd_order, _missing_x]]

15857

\[ {}y^{\prime \prime }+4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

15858

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler]]

16001

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16177

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

16178

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16179

\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

16180

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

16181

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16182

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16183

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]
i.c.

[[_Emden, _Fowler]]

16184

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

16185

\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16186

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

[[_2nd_order, _missing_x]]

16187

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

16188

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

[[_2nd_order, _missing_x]]

16189

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16200

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

16201

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

16206

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

16207

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

16208

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

16209

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

16210

\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

16211

\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16212

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16213

\[ {}4 y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

16214

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

16215

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

16216

\[ {}y^{\prime \prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

16217

\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

16218

\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

16219

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16220

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

16221

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16222

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16223

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16224

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16225

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16226

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16227

\[ {}y^{\prime \prime }+36 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16228

\[ {}y^{\prime \prime }+100 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16229

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16230

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16231

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16232

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16233

\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16234

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16235

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16236

\[ {}y^{\prime \prime }-y^{\prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16237

\[ {}6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16238

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16239

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

16240

\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

[[_Emden, _Fowler]]

16241

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

16242

\[ {}a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

16243

\[ {}y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

16244

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

16245

\[ {}y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

[[_2nd_order, _missing_x]]

16246

\[ {}y^{\prime \prime }-16 y = 0 \]

[[_2nd_order, _missing_x]]

16247

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16250

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16251

\[ {}y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

16252

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \]

[[_2nd_order, _with_linear_symmetries]]

16253

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \]

[[_2nd_order, _with_linear_symmetries]]

16254

\[ {}y^{\prime \prime }-y = 2 t -4 \]

[[_2nd_order, _with_linear_symmetries]]

16255

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16256

\[ {}y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

[[_2nd_order, _missing_y]]

16257

\[ {}y^{\prime \prime }+y = \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16258

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16259

\[ {}y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \]

[[_2nd_order, _linear, _nonhomogeneous]]

16260

\[ {}y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16261

\[ {}y^{\prime \prime } = 3 t^{4}-2 t \]

[[_2nd_order, _quadrature]]

16262

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16263

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -1 \]

[[_2nd_order, _missing_x]]

16264

\[ {}5 y^{\prime \prime }+y^{\prime }-4 y = -3 \]

[[_2nd_order, _missing_x]]

16265

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \]

[[_2nd_order, _with_linear_symmetries]]

16266

\[ {}16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \]

[[_2nd_order, _with_linear_symmetries]]

16267

\[ {}y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \]

[[_2nd_order, _with_linear_symmetries]]

16268

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16269

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16270

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16271

\[ {}y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

16272

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16273

\[ {}y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16274

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16275

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16276

\[ {}y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

16277

\[ {}y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16278

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16279

\[ {}y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

16280

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

16281

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

[[_2nd_order, _missing_y]]

16282

\[ {}y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

[[_2nd_order, _missing_y]]

16283

\[ {}y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

[[_2nd_order, _quadrature]]

16284

\[ {}y^{\prime \prime }+3 y^{\prime } = 18 \]
i.c.

[[_2nd_order, _missing_x]]

16285

\[ {}y^{\prime \prime }-y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

16286

\[ {}y^{\prime \prime }-4 y = 32 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16287

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = -2 \]
i.c.

[[_2nd_order, _missing_x]]

16288

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 3 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16289

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = 4 \]
i.c.

[[_2nd_order, _missing_x]]

16290

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = t \,{\mathrm e}^{-t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16291

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = -1 \]
i.c.

[[_2nd_order, _missing_x]]

16292

\[ {}y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]
i.c.

[[_2nd_order, _missing_y]]

16293

\[ {}y^{\prime \prime }-y^{\prime } = -3 t -4 t^{2} {\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _missing_y]]

16294

\[ {}y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]
i.c.

[[_2nd_order, _missing_y]]

16295

\[ {}y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _missing_y]]

16296

\[ {}y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]
i.c.

[[_2nd_order, _missing_y]]

16297

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16299

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16305

\[ {}y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16306

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16307

\[ {}4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16308

\[ {}y^{\prime \prime }+4 y = 1 \]

[[_2nd_order, _missing_x]]

16309

\[ {}y^{\prime \prime }+16 y^{\prime } = t \]

[[_2nd_order, _missing_y]]

16310

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t} \]

[[_2nd_order, _with_linear_symmetries]]

16311

\[ {}y^{\prime \prime }+16 y = 2 \cos \left (4 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16312

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16313

\[ {}y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16314

\[ {}y^{\prime \prime }+16 y = \csc \left (4 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16315

\[ {}y^{\prime \prime }+16 y = \cot \left (4 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16316

\[ {}y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16317

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16318

\[ {}y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16319

\[ {}y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16320

\[ {}y^{\prime \prime }-6 y^{\prime }+34 y = {\mathrm e}^{3 t} \tan \left (5 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16321

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = {\mathrm e}^{5 t} \cot \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16322

\[ {}y^{\prime \prime }-12 y^{\prime }+37 y = {\mathrm e}^{6 t} \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16323

\[ {}y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 t} \sec \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16324

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16325

\[ {}y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16326

\[ {}y^{\prime \prime }-y = 2 \sinh \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16327

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16328

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16329

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16330

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16331

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16332

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16333

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16334

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16335

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16336

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16337

\[ {}y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16338

\[ {}y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16339

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16340

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16341

\[ {}y^{\prime \prime }+9 y = \tan \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16342

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16343

\[ {}y^{\prime \prime }+16 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16344

\[ {}y^{\prime \prime }+4 y = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16345

\[ {}y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16346

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16347

\[ {}y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16348

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16349

\[ {}y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16350

\[ {}y^{\prime \prime }+y = \tan \left (t \right )^{2} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16351

\[ {}y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16352

\[ {}y^{\prime \prime }+9 y = \csc \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16353

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16354

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16355

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

[[_2nd_order, _with_linear_symmetries]]

16356

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16357

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16358

\[ {}y^{\prime \prime }+4 y = f \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16360

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16362

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16364

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16440

\[ {}4 x^{2} y^{\prime \prime }-8 y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16441

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16442

\[ {}2 x^{2} y^{\prime \prime }-8 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

16443

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]

[[_Emden, _Fowler]]

16444

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

[[_Emden, _Fowler]]

16445

\[ {}9 x^{2} y^{\prime \prime }-9 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

16446

\[ {}2 x^{2} y^{\prime \prime }-2 y^{\prime } x +20 y = 0 \]

[[_Emden, _Fowler]]

16447

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

16448

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +y = 0 \]

[[_Emden, _Fowler]]

16449

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

16450

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

16451

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

16460

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = \frac {1}{x^{5}} \]

[[_2nd_order, _with_linear_symmetries]]

16461

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

16462

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

16463

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = \frac {1}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

16464

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

16465

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

16466

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 8 \]

[[_2nd_order, _with_linear_symmetries]]

16467

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +36 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16470

\[ {}3 x^{2} y^{\prime \prime }-4 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16471

\[ {}2 x^{2} y^{\prime \prime }-7 y^{\prime } x +7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

16472

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16473

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16478

\[ {}2 x^{2} y^{\prime \prime }+3 y^{\prime } x -y = \frac {1}{x^{2}} \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16479

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = \ln \left (x \right ) \]
i.c.

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

16480

\[ {}4 x^{2} y^{\prime \prime }+y = x^{3} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16481

\[ {}9 x^{2} y^{\prime \prime }+27 y^{\prime } x +10 y = \frac {1}{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16482

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

16483

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16484

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16489

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16490

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16491

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16492

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16493

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16494

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16495

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16496

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

16497

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

16498

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16499

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 0 \]
i.c.

[[_Emden, _Fowler]]

16506

\[ {}6 x^{2} y^{\prime \prime }+5 y^{\prime } x -y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16558

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

16559

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

16560

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

16563

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

[[_2nd_order, _missing_x]]

16564

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

16565

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16566

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

16567

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

[[_2nd_order, _missing_x]]

16568

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

16569

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

16570

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

16571

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16575

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

[[_2nd_order, _with_linear_symmetries]]

16576

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

[[_2nd_order, _missing_y]]

16577

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

[[_2nd_order, _missing_y]]

16578

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16579

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16580

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}} \]

[[_2nd_order, _missing_y]]

16581

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

16582

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]

[[_2nd_order, _with_linear_symmetries]]

16583

\[ {}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16584

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16589

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16590

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16591

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16592

\[ {}y^{\prime \prime }+25 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16593

\[ {}y^{\prime \prime }-4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16594

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

16595

\[ {}y^{\prime \prime }+9 y = \sin \left (3 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16596

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16597

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16598

\[ {}y^{\prime \prime }+y = \csc \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16599

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16600

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16601

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16602

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16603

\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

16604

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

16605

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

16606

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

16607

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

16608

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16609

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

16610

\[ {}2 x^{2} y^{\prime \prime }+5 y^{\prime } x +y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

16611

\[ {}5 x^{2} y^{\prime \prime }-y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

16612

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +25 y = 0 \]

[[_Emden, _Fowler]]

16613

\[ {}x^{2} y^{\prime \prime }-7 y^{\prime } x +15 y = 8 x \]

[[_2nd_order, _with_linear_symmetries]]

16623

\[ {}4 x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16624

\[ {}9 x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16625

\[ {}x^{\prime \prime }+64 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16626

\[ {}x^{\prime \prime }+100 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16627

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16628

\[ {}x^{\prime \prime }+4 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16629

\[ {}x^{\prime \prime }+16 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16630

\[ {}x^{\prime \prime }+256 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16631

\[ {}x^{\prime \prime }+9 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16632

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16633

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16634

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16635

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16636

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16637

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16638

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16639

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16641

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16642

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ -t +1 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16643

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16644

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16645

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16646

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16647

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

16660

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

[[_2nd_order, _missing_x]]

16661

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

[[_2nd_order, _missing_x]]

16662

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16663

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

16906

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16909

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

[[_2nd_order, _quadrature]]

16911

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16912

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

[[_2nd_order, _missing_x]]

16917

\[ {}y^{\prime \prime } \left (x +2\right )^{5} = 1 \]
i.c.

[[_2nd_order, _quadrature]]

16918

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]
i.c.

[[_2nd_order, _quadrature]]

16919

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

16920

\[ {}x y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_y]]

16921

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

16922

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

[[_2nd_order, _missing_y]]

16923

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

[[_2nd_order, _missing_y]]

16935

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16952

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

16953

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

16955

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

16956

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16958

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

16960

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

16963

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16964

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

16974

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 \]

[[_2nd_order, _missing_x]]

16975

\[ {}y^{\prime \prime }-7 y^{\prime } = \left (x -1\right )^{2} \]

[[_2nd_order, _missing_y]]

16976

\[ {}y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

16977

\[ {}y^{\prime \prime }+7 y^{\prime } = {\mathrm e}^{-7 x} \]

[[_2nd_order, _missing_y]]

16978

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \left (1-x \right ) {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

16979

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

16980

\[ {}4 y^{\prime \prime }-3 y^{\prime } = x \,{\mathrm e}^{\frac {3 x}{4}} \]

[[_2nd_order, _missing_y]]

16981

\[ {}y^{\prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{4 x} \]

[[_2nd_order, _missing_y]]

16982

\[ {}y^{\prime \prime }+25 y = \cos \left (5 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16983

\[ {}y^{\prime \prime }+y = \sin \left (x \right )-\cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16984

\[ {}y^{\prime \prime }+16 y = \sin \left (4 x +\alpha \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16985

\[ {}y^{\prime \prime }+4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )+\cos \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16986

\[ {}y^{\prime \prime }-4 y^{\prime }+8 y = {\mathrm e}^{2 x} \left (\sin \left (2 x \right )-\cos \left (2 x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16987

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = {\mathrm e}^{-3 x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16988

\[ {}y^{\prime \prime }+k^{2} y = k \sin \left (k x +\alpha \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

16989

\[ {}y^{\prime \prime }+k^{2} y = k \]

[[_2nd_order, _missing_x]]

17010

\[ {}y^{\prime \prime }+2 y^{\prime }+y = -2 \]

[[_2nd_order, _missing_x]]

17011

\[ {}y^{\prime \prime }+2 y^{\prime } = -2 \]

[[_2nd_order, _missing_x]]

17012

\[ {}y^{\prime \prime }+9 y = 9 \]

[[_2nd_order, _missing_x]]

17018

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

17019

\[ {}y^{\prime \prime }+8 y^{\prime } = 8 x \]

[[_2nd_order, _missing_y]]

17020

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

17021

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 8 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

17022

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 9 \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

17023

\[ {}7 y^{\prime \prime }-y^{\prime } = 14 x \]

[[_2nd_order, _missing_y]]

17024

\[ {}y^{\prime \prime }+3 y^{\prime } = 3 x \,{\mathrm e}^{-3 x} \]

[[_2nd_order, _missing_y]]

17025

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 10 \left (1-x \right ) {\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17026

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

17027

\[ {}y^{\prime \prime }+y^{\prime }+y = \left (x^{2}+x \right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17028

\[ {}y^{\prime \prime }+4 y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17029

\[ {}y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17030

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \sin \left (n x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17031

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17032

\[ {}y^{\prime \prime }+a^{2} y = 2 \cos \left (m x \right )+3 \sin \left (m x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17033

\[ {}y^{\prime \prime }-y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

17034

\[ {}y^{\prime \prime }+2 y^{\prime } = 4 \,{\mathrm e}^{x} \left (\sin \left (x \right )+\cos \left (x \right )\right ) \]

[[_2nd_order, _missing_y]]

17035

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 10 \,{\mathrm e}^{-2 x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17036

\[ {}4 y^{\prime \prime }+8 y^{\prime } = x \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

17037

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = x \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17038

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{2} {\mathrm e}^{4 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17039

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left (x^{2}+x \right ) {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17042

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17044

\[ {}y^{\prime \prime }+y = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17045

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x^{2} {\mathrm e}^{-x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17049

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \left (\sin \left (x \right )+2 \cos \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17050

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{x}+{\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17051

\[ {}y^{\prime \prime }+4 y^{\prime } = x +{\mathrm e}^{-4 x} \]

[[_2nd_order, _missing_y]]

17052

\[ {}y^{\prime \prime }-y = x +\sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17053

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \left (1+\sin \left (x \right )\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17056

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17057

\[ {}y^{\prime \prime }-4 y^{\prime } = 2 \cos \left (4 x \right )^{2} \]

[[_2nd_order, _missing_y]]

17058

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x -2 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

17059

\[ {}y^{\prime \prime }-3 y^{\prime } = 18 x -10 \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

17060

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2+{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17061

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left (5 x +4\right ) {\mathrm e}^{x}+{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17062

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x}+17 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17063

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 5 \,{\mathrm e}^{x} \cosh \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17064

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17066

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right )^{2}+{\mathrm e}^{x}+x^{2} \]

[[_2nd_order, _missing_y]]

17068

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 10 \sin \left (x \right )+17 \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17069

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}-{\mathrm e}^{-x}+{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

17070

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 2 x +{\mathrm e}^{-x}-2 \,{\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17071

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+4 \sin \left (2 x \right )+2 \cos \left (x \right )^{2}-1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

17072

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 6 x \,{\mathrm e}^{-x} \left (1-{\mathrm e}^{-x}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17073

\[ {}y^{\prime \prime }+y = \cos \left (2 x \right )^{2}+\sin \left (\frac {x}{2}\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17074

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 1+8 \cos \left (x \right )+{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17075

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (\frac {x}{2}\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17076

\[ {}y^{\prime \prime }-3 y^{\prime } = 1+{\mathrm e}^{x}+\cos \left (x \right )+\sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

17077

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \left (1-2 \sin \left (x \right )^{2}\right )+10 x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

17078

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 x +\sin \left (x \right )+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17079

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1+2 \cos \left (x \right )+\cos \left (2 x \right )-\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17080

\[ {}y^{\prime \prime }+y^{\prime }+y+1 = \sin \left (x \right )+x +x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17081

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 18 \,{\mathrm e}^{-3 x}+8 \sin \left (x \right )+6 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17082

\[ {}y^{\prime \prime }+2 y^{\prime }+1 = 3 \sin \left (2 x \right )+\cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

17084

\[ {}y^{\prime \prime }+y = 2 \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17089

\[ {}y^{\prime \prime }+y = 2-2 x \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17090

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 9 x^{2}-12 x +2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17091

\[ {}y^{\prime \prime }+9 y = 36 \,{\mathrm e}^{3 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17092

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 \,{\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17093

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \left (12 x -7\right ) {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17094

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]
i.c.

[[_2nd_order, _missing_y]]

17095

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 10 \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17096

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17097

\[ {}y^{\prime \prime }+4 y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17098

\[ {}y^{\prime \prime }+y = 4 x \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17099

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = 2 x^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17100

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 16 \,{\mathrm e}^{-x}+9 x -6 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17101

\[ {}y^{\prime \prime }-y^{\prime } = -5 \,{\mathrm e}^{-x} \left (\sin \left (x \right )+\cos \left (x \right )\right ) \]
i.c.

[[_2nd_order, _missing_y]]

17102

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 4 \,{\mathrm e}^{x} \cos \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17107

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17108

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \cos \left (2 x \right )+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17109

\[ {}y^{\prime \prime }-y = 1 \]

[[_2nd_order, _missing_x]]

17110

\[ {}y^{\prime \prime }-y = -2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17117

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17118

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17119

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

17120

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

17121

\[ {}\left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17122

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17127

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = x \left (6-\ln \left (x \right )\right ) \]

[[_2nd_order, _with_linear_symmetries]]

17128

\[ {}x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17129

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = -\frac {16 \ln \left (x \right )}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17130

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -2 y = x^{2}-2 x +2 \]

[[_2nd_order, _with_linear_symmetries]]

17131

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17132

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 2 \ln \left (x \right )^{2}+12 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17133

\[ {}\left (x +1\right )^{3} y^{\prime \prime }+3 \left (x +1\right )^{2} y^{\prime }+\left (x +1\right ) y = 6 \ln \left (x +1\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17134

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

[[_2nd_order, _with_linear_symmetries]]

17135

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17136

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

[_Jacobi]

17137

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (x +1\right ) y^{\prime }+6 y = 6 \]

[[_2nd_order, _with_linear_symmetries]]

17148

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17149

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _missing_y]]

17150

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17151

\[ {}y^{\prime \prime }+y = \frac {1}{\sqrt {\sin \left (x \right )^{5} \cos \left (x \right )}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17152

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{x^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17153

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{\sin \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17154

\[ {}y^{\prime \prime }+y = \frac {2}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17155

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x} \cos \left ({\mathrm e}^{x}\right ) \]

[[_2nd_order, _missing_y]]

17157

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _missing_y]]

17158

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

[[_2nd_order, _missing_y]]

17160

\[ {}x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

[[_2nd_order, _missing_y]]

17164

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x = \frac {1}{x^{2}+1} \]
i.c.

[[_2nd_order, _missing_y]]

17170

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

17171

\[ {}x^{\prime \prime }+2 x^{\prime }+6 x = 0 \]

[[_2nd_order, _missing_x]]

17172

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

[[_2nd_order, _missing_x]]

17180

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17181

\[ {}y^{\prime \prime }+\lambda y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17182

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17185

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17186

\[ {}y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17187

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17188

\[ {}y^{\prime \prime }+\alpha y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17189

\[ {}y^{\prime \prime }+\alpha ^{2} y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

17190

\[ {}y^{\prime \prime }+y = 1 \]
i.c.

[[_2nd_order, _missing_x]]

17191

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17192

\[ {}y^{\prime \prime }+\lambda ^{2} y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17195

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

17217

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17221

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{4} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17224

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17225

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \pi ^{2}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

17226

\[ {}y^{\prime \prime }-4 y = \cos \left (\pi x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17227

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \arcsin \left (\sin \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17228

\[ {}y^{\prime \prime }+9 y = \sin \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17551

\[ {}a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y = d \]

[[_2nd_order, _with_linear_symmetries]]

17552

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17553

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17554

\[ {}y^{\prime \prime }+y^{\prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17555

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17556

\[ {}y^{\prime \prime }-y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17563

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {\alpha \left (\alpha +1\right ) \mu ^{2} y}{-x^{2}+1} = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17565

\[ {}t^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17567

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

17568

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

17569

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

17571

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

17583

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

17584

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

17585

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

17586

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

17587

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

17588

\[ {}y^{\prime \prime }-2 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

17589

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

17590

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

17591

\[ {}6 y^{\prime \prime }-y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

17592

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

17593

\[ {}y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

[[_2nd_order, _missing_x]]

17594

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

17595

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

17596

\[ {}4 y^{\prime \prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

17597

\[ {}25 y^{\prime \prime }-20 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

17598

\[ {}y^{\prime \prime }-4 y^{\prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

17599

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

[[_2nd_order, _missing_x]]

17600

\[ {}y^{\prime \prime }+2 y^{\prime }+\frac {5 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

17601

\[ {}y^{\prime \prime }-9 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

17602

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

17603

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

17604

\[ {}9 y^{\prime \prime }-24 y^{\prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

17605

\[ {}4 y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

17606

\[ {}4 y^{\prime \prime }+9 y^{\prime }-9 y = 0 \]

[[_2nd_order, _missing_x]]

17607

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

17608

\[ {}y^{\prime \prime }+4 y^{\prime }+\frac {25 y}{4} = 0 \]

[[_2nd_order, _missing_x]]

17609

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17610

\[ {}y^{\prime \prime }+16 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17611

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17612

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17613

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17614

\[ {}6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17615

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17616

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17617

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17618

\[ {}y^{\prime \prime }+y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17619

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17620

\[ {}y^{\prime \prime }+6 y^{\prime }+3 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17621

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17622

\[ {}2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17623

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17624

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17625

\[ {}4 y^{\prime \prime }-y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17626

\[ {}a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y = 0 \]

[[_Emden, _Fowler]]

17627

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

17628

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17629

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +\frac {5 y}{4} = 0 \]

[[_Emden, _Fowler]]

17630

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x -6 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17631

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

17632

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]

[[_Emden, _Fowler]]

17633

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler]]

17634

\[ {}2 x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler]]

17635

\[ {}2 x^{2} y^{\prime \prime }+y^{\prime } x -3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

17636

\[ {}4 x^{2} y^{\prime \prime }+8 y^{\prime } x +17 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17637

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +9 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17638

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

17639

\[ {}y^{\prime \prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17640

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17641

\[ {}m y^{\prime \prime }+k y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

17642

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 \,{\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

17643

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17644

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = -3 t \,{\mathrm e}^{-t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17645

\[ {}y^{\prime \prime }+2 y^{\prime } = 3+4 \sin \left (2 t \right ) \]

[[_2nd_order, _missing_y]]

17646

\[ {}y^{\prime \prime }+9 y = t^{2} {\mathrm e}^{3 t}+6 \]

[[_2nd_order, _linear, _nonhomogeneous]]

17647

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17648

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

17649

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17650

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17651

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

17652

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = t^{2}+3 \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17653

\[ {}y^{\prime \prime }+y = 3 \sin \left (2 t \right )+t \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17654

\[ {}u^{\prime \prime }+w_{0}^{2} u = \cos \left (w t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17655

\[ {}y^{\prime \prime }+y^{\prime }+4 y = 2 \sinh \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17656

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17657

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 2 t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

17658

\[ {}y^{\prime \prime }+4 y = t^{2}+3 \,{\mathrm e}^{t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17659

\[ {}y^{\prime \prime }-2 y^{\prime }+y = t \,{\mathrm e}^{t}+4 \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17660

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 3 t \,{\mathrm e}^{2 t} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17661

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17662

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-t} \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17663

\[ {}y^{\prime \prime }+3 y^{\prime } = 2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \]

[[_2nd_order, _missing_y]]

17664

\[ {}y^{\prime \prime }+y = t \left (1+\sin \left (t \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17665

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{t} \cos \left (2 t \right )+{\mathrm e}^{2 t} \left (3 t +4\right ) \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17666

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17667

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 2 t^{2}+4 t \,{\mathrm e}^{2 t}+t \sin \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17668

\[ {}y^{\prime \prime }+4 y = t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17669

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{t} \left (t^{2}+1\right ) \sin \left (2 t \right )+3 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{t} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17670

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 t \,{\mathrm e}^{-t} \cos \left (2 t \right )-2 t \,{\mathrm e}^{-2 t} \cos \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17671

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17672

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17673

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17674

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 3 x^{2}+2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17675

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +4 y = \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17676

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t \le \pi \\ \pi \,{\mathrm e}^{\pi -t} & \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17677

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0\le t \le \frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17678

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17679

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 2 \cos \left (w t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17680

\[ {}y^{\prime \prime }+y = 2 \cos \left (w t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17681

\[ {}y^{\prime \prime }+y = 3 \cos \left (w t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17682

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (\frac {t}{4}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17683

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17684

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (6 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17687

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

17688

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17689

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17690

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

17691

\[ {}y^{\prime \prime }+y = \tan \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17692

\[ {}y^{\prime \prime }+4 y = 3 \sec \left (2 t \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17693

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17694

\[ {}y^{\prime \prime }+4 y = 2 \csc \left (\frac {t}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17695

\[ {}4 y^{\prime \prime }+y = 2 \sec \left (2 t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17696

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

[[_2nd_order, _linear, _nonhomogeneous]]

17697

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17698

\[ {}y^{\prime \prime }+4 y = g \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17699

\[ {}t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3} \]

[[_2nd_order, _with_linear_symmetries]]

17700

\[ {}t y^{\prime \prime }-\left (1+t \right ) y^{\prime }+y = t^{2} {\mathrm e}^{2 t} \]

[[_2nd_order, _with_linear_symmetries]]

17701

\[ {}\left (-t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

[[_2nd_order, _with_linear_symmetries]]

17702

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17703

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = g \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

17704

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17705

\[ {}t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17706

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{2} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

17707

\[ {}t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

[[_2nd_order, _with_linear_symmetries]]

17708

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

17709

\[ {}y^{\prime \prime }+y = g \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

17893

\[ {}y^{\prime \prime } = \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

17996

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

18001

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 2 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

18002

\[ {}y^{\prime \prime }+\frac {x y^{\prime }}{1-x}-\frac {y}{1-x} = x -1 \]

[[_2nd_order, _with_linear_symmetries]]

18005

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

18007

\[ {}y^{\prime \prime }+p_{1} y^{\prime }+p_{2} y = 0 \]

[[_2nd_order, _missing_x]]

18008

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18014

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

18016

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

18017

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{x}+{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18020

\[ {}y^{\prime \prime }+4 y = x \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18021

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18022

\[ {}y^{\prime \prime }-y = \frac {{\mathrm e}^{x}-{\mathrm e}^{-x}}{{\mathrm e}^{x}+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18023

\[ {}y^{\prime \prime }-2 y = 4 x^{2} {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18024

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18025

\[ {}y^{\prime \prime }+9 y = \ln \left (2 \sin \left (\frac {x}{2}\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18026

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18027

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

18028

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

18029

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18031

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18033

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

[_Lienard]

18035

\[ {}x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18036

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18037

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18060

\[ {}y^{\prime \prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

18061

\[ {}y^{\prime \prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

18101

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

18193

\[ {}x y^{\prime \prime }+y^{\prime } = 4 x \]

[[_2nd_order, _missing_y]]

18214

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x = 1 \]

[[_2nd_order, _missing_y]]

18221

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

18249

\[ {}x y^{\prime \prime }-y^{\prime } = 3 x^{2} \]

[[_2nd_order, _missing_y]]

18250

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18251

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x \]

[[_2nd_order, _with_linear_symmetries]]

18252

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 1 \]

[[_2nd_order, _with_linear_symmetries]]

18253

\[ {}y^{\prime \prime }-2 y^{\prime } = 6 \]

[[_2nd_order, _missing_x]]

18254

\[ {}y^{\prime \prime }-2 y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18255

\[ {}y^{\prime \prime } = {\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

18256

\[ {}y^{\prime \prime }-2 y^{\prime } = 4 \]

[[_2nd_order, _missing_x]]

18257

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18258

\[ {}\left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18259

\[ {}y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

18260

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x -5 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18261

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +\left (x^{2}+6\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18262

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

18263

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]
i.c.

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18264

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18265

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

18266

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

18267

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18268

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18269

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18271

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18284

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = 0 \]

[_Laguerre]

18285

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

[_Laguerre]

18286

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

[_Laguerre]

18288

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

[[_2nd_order, _missing_x]]

18289

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

18290

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

18291

\[ {}2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

18292

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

[[_2nd_order, _missing_x]]

18293

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

[[_2nd_order, _missing_x]]

18294

\[ {}2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

18295

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

18296

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

18297

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

18298

\[ {}4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

18299

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

[[_2nd_order, _missing_x]]

18300

\[ {}y^{\prime \prime } = 4 y \]

[[_2nd_order, _missing_x]]

18301

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

18302

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

[[_2nd_order, _missing_x]]

18303

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

18304

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

18305

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

18306

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18307

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18308

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18309

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18310

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18311

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18312

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +10 y = 0 \]

[[_Emden, _Fowler]]

18313

\[ {}2 x^{2} y^{\prime \prime }+10 y^{\prime } x +8 y = 0 \]

[[_Emden, _Fowler]]

18314

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -12 y = 0 \]

[[_Emden, _Fowler]]

18315

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

[[_Emden, _Fowler]]

18316

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18317

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18318

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x +3 y = 0 \]

[[_Emden, _Fowler]]

18319

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18320

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18321

\[ {}x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

18323

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

18324

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18325

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

[[_2nd_order, _with_linear_symmetries]]

18326

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

[[_2nd_order, _with_linear_symmetries]]

18327

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

[[_2nd_order, _with_linear_symmetries]]

18328

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18329

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18330

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

[[_2nd_order, _missing_y]]

18331

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

18332

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18333

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

[[_2nd_order, _missing_y]]

18334

\[ {}y^{\prime \prime }+k^{2} y = \sin \left (b x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18335

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

18336

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18337

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]

[[_2nd_order, _with_linear_symmetries]]

18338

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

18339

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18340

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18341

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18342

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18343

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

[[_2nd_order, _with_linear_symmetries]]

18344

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18345

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18346

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18347

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18348

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18349

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18350

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18351

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18352

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = \left (x^{2}-1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

18353

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (x +1\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18354

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

18355

\[ {}x y^{\prime \prime }-\left (x +1\right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

18356

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 y = x \,{\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

18380

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

18381

\[ {}y^{\prime \prime }-y = x^{2} {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18382

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 10 x^{3} {\mathrm e}^{-2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18383

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

18384

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

18385

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \,{\mathrm e}^{5 x} \]

[[_2nd_order, _with_linear_symmetries]]

18386

\[ {}y^{\prime \prime }-y^{\prime }+y = x^{3}-3 x^{2}+1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

18388

\[ {}4 y^{\prime \prime }+y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18391

\[ {}y^{\prime \prime }+y^{\prime }-y = -x^{4}+3 x \]

[[_2nd_order, _linear, _nonhomogeneous]]

18392

\[ {}y^{\prime \prime }+y = x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18395

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18396

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = {\mathrm e}^{2 x} \left (x^{3}-5 x^{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18397

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18406

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18414

\[ {}y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18513

\[ {}t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0 \]

[[_Emden, _Fowler]]

18516

\[ {}t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18517

\[ {}x^{\prime \prime }-5 x^{\prime }+6 x = 0 \]

[[_2nd_order, _missing_x]]

18518

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

[[_2nd_order, _missing_x]]

18519

\[ {}x^{\prime \prime }-4 x^{\prime }+5 x = 0 \]

[[_2nd_order, _missing_x]]

18520

\[ {}x^{\prime \prime }+3 x^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

18521

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18522

\[ {}x^{\prime \prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18523

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18524

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]
i.c.

[[_2nd_order, _missing_x]]

18525

\[ {}x^{\prime \prime }-x = t^{2} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

18526

\[ {}x^{\prime \prime }-x = {\mathrm e}^{t} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

18527

\[ {}x^{\prime \prime }+2 x^{\prime }+4 x = {\mathrm e}^{t} \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

18528

\[ {}x^{\prime \prime }-x^{\prime }+x = \sin \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

18529

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = t \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

18530

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

18565

\[ {}\theta ^{\prime \prime } = -p^{2} \theta \]

[[_2nd_order, _missing_x]]

18580

\[ {}\theta ^{\prime \prime }-p^{2} \theta = 0 \]

[[_2nd_order, _missing_x]]

18581

\[ {}y^{\prime \prime }+y = 0 \]

[[_2nd_order, _missing_x]]

18582

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

[[_2nd_order, _missing_x]]

18583

\[ {}r^{\prime \prime }-a^{2} r = 0 \]

[[_2nd_order, _missing_x]]

18585

\[ {}v^{\prime \prime }-6 v^{\prime }+13 v = {\mathrm e}^{-2 u} \]

[[_2nd_order, _with_linear_symmetries]]

18586

\[ {}y^{\prime \prime }+4 y^{\prime }-y = \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18587

\[ {}y^{\prime \prime }+3 y = \sin \left (x \right )+\frac {\sin \left (3 x \right )}{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18595

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18599

\[ {}y^{\prime \prime } = -m^{2} y \]

[[_2nd_order, _missing_x]]

18602

\[ {}x y^{\prime \prime }+2 y^{\prime } = x y \]

[[_2nd_order, _with_linear_symmetries]]

18606

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

18607

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

18608

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18615

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18616

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 0 \]

[[_2nd_order, _missing_y]]

18618

\[ {}v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18655

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

[[_2nd_order, _missing_x]]

18656

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

[[_2nd_order, _missing_x]]

18664

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

18666

\[ {}y^{\prime \prime }-4 y^{\prime }+2 y = x \]

[[_2nd_order, _with_linear_symmetries]]

18667

\[ {}y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

18670

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

18671

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

18672

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18674

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18678

\[ {}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2} \]

[[_2nd_order, _quadrature]]

18679

\[ {}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

18680

\[ {}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \]

[[_2nd_order, _quadrature]]

18681

\[ {}e y^{\prime \prime } = -P \left (L -x \right ) \]

[[_2nd_order, _quadrature]]

18682

\[ {}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \]

[[_2nd_order, _quadrature]]

18683

\[ {}e y^{\prime \prime } = P \left (a -y\right ) \]

[[_2nd_order, _missing_x]]

18685

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -8 y = x \]

[[_2nd_order, _with_linear_symmetries]]

18689

\[ {}x y^{\prime \prime }+2 y^{\prime } = 2 x \]

[[_2nd_order, _missing_y]]

18690

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

18691

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18692

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 y^{\prime } x +2 y = x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18694

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18695

\[ {}\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (1+6 x \right ) y^{\prime }+6 y = \sin \left (x \right ) \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18698

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

[[_2nd_order, _quadrature]]

18699

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

18700

\[ {}y^{\prime \prime } = -a^{2} y \]

[[_2nd_order, _missing_x]]

18705

\[ {}x y^{\prime \prime }+3 y^{\prime } = 3 x \]

[[_2nd_order, _missing_y]]

18706

\[ {}x = y^{\prime \prime }+y^{\prime } \]

[[_2nd_order, _missing_y]]

18709

\[ {}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18710

\[ {}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18724

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18725

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

18726

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

[[_2nd_order, _missing_x]]

18867

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

[[_2nd_order, _missing_x]]

18868

\[ {}y^{\prime \prime }-m^{2} y = 0 \]

[[_2nd_order, _missing_x]]

18869

\[ {}2 y^{\prime \prime }+5 y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

18870

\[ {}9 y^{\prime \prime }+18 y^{\prime }-16 y = 0 \]

[[_2nd_order, _missing_x]]

18873

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

18876

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

18877

\[ {}y^{\prime \prime }-y = 2+5 x \]

[[_2nd_order, _with_linear_symmetries]]

18878

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x} \]

[[_2nd_order, _with_linear_symmetries]]

18882

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{\frac {5 x}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

18886

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18887

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18890

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18891

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18892

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18893

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18897

\[ {}y^{\prime \prime }+4 y = \sin \left (3 x \right )+{\mathrm e}^{x}+x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18898

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x +{\mathrm e}^{m x} \]

[[_2nd_order, _with_linear_symmetries]]

18899

\[ {}y^{\prime \prime }-a^{2} y = {\mathrm e}^{a x}+{\mathrm e}^{n x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18905

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18906

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18907

\[ {}y^{\prime \prime }+n^{2} y = {\mathrm e}^{x} x^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18911

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18913

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18917

\[ {}y^{\prime \prime }-y = x \sin \left (x \right )+\left (x^{2}+1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18918

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = {\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18920

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 20 x \]

[[_2nd_order, _with_linear_symmetries]]

18923

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

18924

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

18927

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = x^{4} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18928

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

18929

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -20 y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

18930

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18932

\[ {}\left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

18934

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18936

\[ {}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

18940

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18941

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{m} \]

[[_2nd_order, _with_linear_symmetries]]

18944

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

18945

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

18946

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

18948

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

18949

\[ {}x y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

18956

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

18957

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

18974

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

18983

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

[[_2nd_order, _missing_y]]

18990

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

18993

\[ {}y^{\prime \prime } = \frac {a}{x} \]

[[_2nd_order, _quadrature]]

18996

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

18999

\[ {}a y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

19003

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19004

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

[[_2nd_order, _with_linear_symmetries]]

19005

\[ {}\left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19006

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19007

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19010

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19011

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19012

\[ {}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19013

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19015

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19017

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

[[_2nd_order, _with_linear_symmetries]]

19018

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19019

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19020

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19023

\[ {}y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19025

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

19029

\[ {}y^{\prime \prime }+y^{\prime } x -y = f \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

19030

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

19031

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19032

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19035

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19045

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = \frac {1}{x} \]

[[_2nd_order, _with_linear_symmetries]]

19046

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{r} = 0 \]

[[_2nd_order, _missing_y]]

19159

\[ {}y^{\prime \prime }-n^{2} y = 0 \]

[[_2nd_order, _missing_x]]

19161

\[ {}2 x^{\prime \prime }+5 x^{\prime }-12 x = 0 \]

[[_2nd_order, _missing_x]]

19162

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

[[_2nd_order, _missing_x]]

19163

\[ {}9 x^{\prime \prime }+18 x^{\prime }-16 x = 0 \]

[[_2nd_order, _missing_x]]

19165

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

19173

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

[[_2nd_order, _with_linear_symmetries]]

19174

\[ {}y^{\prime \prime }-y = 2+5 x \]

[[_2nd_order, _with_linear_symmetries]]

19175

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 15 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19176

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19177

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{\frac {5 x}{2}} \]

[[_2nd_order, _with_linear_symmetries]]

19178

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-x} \]

[[_2nd_order, _with_linear_symmetries]]

19179

\[ {}y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y = {\mathrm e}^{k x} \]

[[_2nd_order, _with_linear_symmetries]]

19180

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right )+\cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19181

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right )+\cos \left (b x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19182

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+\sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19184

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19185

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19191

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19192

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19193

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19196

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \left (x -1\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19197

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19200

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19201

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19202

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x}+\cos \left (x \right )+x^{3}+{\mathrm e}^{x} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19206

\[ {}y^{\prime \prime }+y = 3 \cos \left (x \right )^{2}+2 \sin \left (x \right )^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19209

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y+37 \sin \left (3 x \right ) = 0 \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

19315

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -2 y = 0 \]

[[_Emden, _Fowler]]

19316

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +y = 2 \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

19323

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +5 y = 0 \]

[[_Emden, _Fowler]]

19325

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19326

\[ {}x^{2} y^{\prime \prime }+7 y^{\prime } x +5 y = x^{5} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19327

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

19328

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = x^{4} \]

[[_2nd_order, _with_linear_symmetries]]

19329

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x -4 y = x^{4} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19330

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{m} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19331

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = x^{m} \]

[[_2nd_order, _with_linear_symmetries]]

19332

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x = \ln \left (x \right ) \]

[[_2nd_order, _missing_y]]

19333

\[ {}x^{2} y^{\prime \prime }+4 y^{\prime } x +2 y = {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19334

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x -3 y = x \]

[[_2nd_order, _with_linear_symmetries]]

19338

\[ {}x^{2} y^{\prime \prime }+2 y^{\prime } x -20 y = \left (x +1\right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19341

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x +2 y = x \ln \left (x \right ) \]

[[_2nd_order, _with_linear_symmetries]]

19342

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +5 y = x^{2} \sin \left (\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19345

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19346

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime } = \left (2 x +3\right ) \left (2 x +4\right ) \]

[[_2nd_order, _missing_y]]

19347

\[ {}x y^{\prime \prime }+2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19349

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19353

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19354

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19355

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +y = 2 x \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19356

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (6 x +3\right ) y^{\prime }+2 y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19358

\[ {}\left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19363

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

[[_2nd_order, _linear, _nonhomogeneous]]

19366

\[ {}y^{\prime \prime } = x +\sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

19367

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

[[_2nd_order, _quadrature]]

19368

\[ {}y^{\prime \prime } \cos \left (x \right )^{2} = 1 \]

[[_2nd_order, _quadrature]]

19370

\[ {}y^{\prime \prime } = \frac {a}{x} \]

[[_2nd_order, _quadrature]]

19372

\[ {}y^{\prime \prime } \sqrt {a^{2}+x^{2}} = x \]

[[_2nd_order, _quadrature]]

19373

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

[[_2nd_order, _quadrature]]

19374

\[ {}y^{\prime \prime } = y \]

[[_2nd_order, _missing_x]]

19376

\[ {}y^{\prime \prime }-a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

19380

\[ {}y^{\prime \prime } = y^{\prime } x \]

[[_2nd_order, _missing_y]]

19382

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

[[_2nd_order, _missing_y]]

19383

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

19385

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

[[_2nd_order, _missing_y]]

19386

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +a x = 0 \]

[[_2nd_order, _missing_y]]

19387

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x = a x \]

[[_2nd_order, _missing_y]]

19391

\[ {}x y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

19392

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

[[_2nd_order, _missing_y]]

19400

\[ {}a y^{\prime \prime } = y^{\prime } \]

[[_2nd_order, _missing_x]]

19422

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

19427

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 y^{\prime } x +y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19430

\[ {}{\mathrm e}^{x} \left (x y^{\prime \prime }-y^{\prime }\right ) = x^{3} \]

[[_2nd_order, _missing_y]]

19431

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x = 2 \]

[[_2nd_order, _missing_y]]

19435

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

[[_2nd_order, _with_linear_symmetries]]

19436

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

[_Laguerre]

19437

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime } = y+{\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19438

\[ {}\left (x +1\right ) y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }+\left (x +5\right ) y = {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19439

\[ {}\left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19440

\[ {}y^{\prime \prime }+y^{\prime } x -y = X \]

[[_2nd_order, _with_linear_symmetries]]

19446

\[ {}y^{\prime \prime }+4 y^{\prime } x +4 x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19447

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19448

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

[[_2nd_order, _with_linear_symmetries]]

19449

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19450

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

19452

\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19453

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = \sec \left (x \right ) {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19454

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19455

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19456

\[ {}y^{\prime \prime }+2 n \cot \left (n x \right ) y^{\prime }+\left (m^{2}-n^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19457

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19458

\[ {}x^{2} y^{\prime \prime }-2 n x y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19459

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19461

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19462

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19463

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x +m^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19466

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19469

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19470

\[ {}x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-2 y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19471

\[ {}x^{2} y^{\prime \prime }+y^{\prime }-\left (x^{2}+1\right ) y = {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19472

\[ {}\left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

19473

\[ {}y^{\prime \prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

19474

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19475

\[ {}y^{\prime \prime }+4 y = 4 \tan \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19476

\[ {}\left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y = \left (1-x \right )^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19477

\[ {}y^{\prime \prime }-y = \frac {2}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19478

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-4 y^{\prime } x -\left (x^{2}+1\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

19479

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = -4 x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

19480

\[ {}-y+y^{\prime } x = \left (x -1\right ) \left (y^{\prime \prime }-x +1\right ) \]

[[_2nd_order, _with_linear_symmetries]]

19482

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

19483

\[ {}\left (x^{2}+a \right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19484

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19485

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+1\right ) y = x^{3}+3 x \]

[[_2nd_order, _with_linear_symmetries]]

19486

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19487

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19488

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +\frac {a^{2} y}{-x^{2}+1} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19489

\[ {}\left (2 x -1\right ) y^{\prime \prime }-2 y^{\prime }+\left (3-2 x \right ) y = 2 \,{\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19490

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 8 x^{3} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19491

\[ {}y^{\prime \prime }+2 y^{\prime } x +\left (x^{2}+5\right ) y = x \,{\mathrm e}^{-\frac {x^{2}}{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19492

\[ {}x \left (-x^{2}+1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) \left (3 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19493

\[ {}y^{\prime \prime }+\left (1-\frac {2}{x^{2}}\right ) y = x^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19494

\[ {}\left (x^{3}-2 x^{2}\right ) y^{\prime \prime }+2 x^{2} y^{\prime }-12 \left (x -2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19495

\[ {}x y^{\prime \prime }-2 \left (x +1\right ) y^{\prime }+\left (x +2\right ) y = \left (x -2\right ) {\mathrm e}^{2 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19496

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

19498

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19500

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19501

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-\left (4 x^{2}-3 x -5\right ) y^{\prime }+\left (4 x^{2}-6 x -5\right ) y = {\mathrm e}^{2 x} \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

19502

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+y^{\prime } x = m^{2} y \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

19505

\[ {}\left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

19506

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

19507

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19529

\[ {}2 y^{\prime \prime }+9 y^{\prime }-18 y = 0 \]

[[_2nd_order, _missing_x]]

19533

\[ {}y^{\prime \prime }+n^{2} y = \sec \left (n x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19535

\[ {}y^{\prime \prime }-4 y^{\prime }+y = a \cos \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19538

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19540

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19541

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \sinh \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19542

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19543

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19579

\[ {}x^{2} y^{\prime \prime }-2 y = x^{2}+\frac {1}{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19583

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +4 y = 2 x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19585

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +y = \frac {1}{\left (1-x \right )^{2}} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19587

\[ {}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

[[_2nd_order, _with_linear_symmetries]]

19589

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19591

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19592

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

19597

\[ {}2 x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (7 x +3\right ) y^{\prime }-3 y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19603

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

[[_2nd_order, _quadrature]]

19604

\[ {}y^{\prime \prime } = \sec \left (x \right )^{2} \]

[[_2nd_order, _quadrature]]

19610

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

19614

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19616

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x -y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _with_linear_symmetries]]

19617

\[ {}\left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (x +1\right ) {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

19621

\[ {}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19622

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +\left (x^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19623

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{4}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19624

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+y = 0 \]

[_Lienard]

19625

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19629

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = 8 x^{3} \sin \left (x^{2}\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19631

\[ {}\left (x +1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19632

\[ {}x y^{\prime \prime }+\left (x -1\right ) y^{\prime }-y = x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

19633

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+6 x +2\right ) y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

19634

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

19635

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -y = x^{2} {\mathrm e}^{x} \]

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

19636

\[ {}x^{2} y^{\prime \prime }-2 x \left (x +1\right ) y^{\prime }+2 \left (x +1\right ) y = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]