2.1 Problems not solved

Table 2.1: Problems not solved [1050]

#

ID

ODE

CAS classification

Maple solved?

Mma solved?

\(1\)

36

\[ {}y^{\prime } = x^{2}-y^{2} \]
i.c.

[_Riccati]

\(2\)

529

\[ {}y^{\prime } = y^{2}+x^{2} \]
i.c.

[[_Riccati, _special]]

\(3\)

604

\[ {}\left [\begin {array}{c} x^{\prime }=x t -{\mathrm e}^{t} y+\cos \left (t \right ) \\ y^{\prime }={\mathrm e}^{-t} x+t^{2} y-\sin \left (t \right ) \end {array}\right ] \]

system_of_ODEs

\(4\)

1469

\[ {}t y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }+t y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(5\)

1470

\[ {}\left (-t +2\right ) y^{\prime \prime \prime }+\left (-3+2 t \right ) y^{\prime \prime }-y^{\prime } t +y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(6\)

1471

\[ {}t^{2} \left (3+t \right ) y^{\prime \prime \prime }-3 t \left (t +2\right ) y^{\prime \prime }+6 \left (t +1\right ) y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(7\)

1610

\[ {}y^{\prime } = \tan \left (x y\right ) \]

[‘y=_G(x,y’)‘]

\(8\)

1728

\[ {}3 y^{3} x^{2}-y^{2}+y+\left (-x y+2 x \right ) y^{\prime } = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

\(9\)

1753

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\left (6 x -8\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(10\)

1755

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(11\)

1823

\[ {}\sin \left (x \right ) y^{\prime \prime }+\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime }+\left (\sin \left (x \right )-\cos \left (x \right )\right ) y = {\mathrm e}^{-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(12\)

2348

\[ {}y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]
i.c.

[_Riccati]

\(13\)

2520

\[ {}y^{\prime } = t^{2}+y^{2} \]
i.c.

[[_Riccati, _special]]

\(14\)

2523

\[ {}y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]
i.c.

[_Riccati]

\(15\)

2791

\[ {}\left [\begin {array}{c} x^{\prime }=a x-b x y \\ y^{\prime }=-c y+d x y \\ z^{\prime }=z+x^{2}+y^{2} \end {array}\right ] \]

system_of_ODEs

\(16\)

2792

\[ {}\left [\begin {array}{c} x^{\prime }=-x-x \,y^{2} \\ y^{\prime }=-y-y \,x^{2} \\ z^{\prime }=1-z+x^{2} \end {array}\right ] \]

system_of_ODEs

\(17\)

2793

\[ {}\left [\begin {array}{c} x^{\prime }=x \,y^{2}-x \\ y^{\prime }=x \sin \left (\pi y\right ) \end {array}\right ] \]

system_of_ODEs

\(18\)

2794

\[ {}\left [\begin {array}{c} x^{\prime }=\cos \left (y\right ) \\ y^{\prime }=\sin \left (x\right )-1 \end {array}\right ] \]

system_of_ODEs

\(19\)

2796

\[ {}\left [\begin {array}{c} x^{\prime }=x-y^{2} \\ y^{\prime }=x^{2}-y \\ z^{\prime }={\mathrm e}^{z}-x \end {array}\right ] \]

system_of_ODEs

\(20\)

2816

\[ {}\left [\begin {array}{c} x^{\prime }=x^{2}+y^{2}-1 \\ y^{\prime }=2 x y \end {array}\right ] \]

system_of_ODEs

\(21\)

2819

\[ {}\left [\begin {array}{c} x^{\prime }={\mathrm e}^{y}-x \\ y^{\prime }={\mathrm e}^{x}+y \end {array}\right ] \]

system_of_ODEs

\(22\)

2945

\[ {}\left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y = 0 \]

[‘y=_G(x,y’)‘]

\(23\)

3003

\[ {}\left (-x^{2}+1\right ) y^{\prime }+x y = x \left (-x^{2}+1\right ) \sqrt {y} \]
i.c. hint: bernoulli

[_rational, _Bernoulli]

\(24\)

3492

\[ {}-\frac {{y^{\prime }}^{2}}{y^{2}}+\frac {y^{\prime \prime }}{y}+\frac {2 a \coth \left (2 a x \right ) y^{\prime }}{y} = 2 a^{2} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(25\)

3498

\[ {}2 y y^{\prime \prime \prime }+2 \left (y+3 y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} = \sin \left (x \right ) \]

[[_3rd_order, _exact, _nonlinear]]

\(26\)

3824

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-\tan \left (t \right ) x_{1}+3 \cos \left (t \right )^{2} \\ x_{2}^{\prime }=x_{1}+\tan \left (t \right ) x_{2}+2 \sin \left (t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

\(27\)

3832

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}}{t} \\ x_{2}^{\prime }=x_{2} \end {array}\right ] \]

system_of_ODEs

\(28\)

3833

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}}{t}+t x_{2} \\ x_{2}^{\prime }=-\frac {x_{1}}{t} \end {array}\right ] \]

system_of_ODEs

\(29\)

3891

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\left (-1+2 t \right ) x_{1} \\ x_{2}^{\prime }={\mathrm e}^{-t^{2}+t} x_{1}+x_{2} \end {array}\right ] \]

system_of_ODEs

\(30\)

4536

\[ {}\left [\begin {array}{c} x^{\prime \prime }+x^{\prime }+y^{\prime }-2 y=0 \\ x^{\prime }+x-y^{\prime }=0 \end {array}\right ] \]

system_of_ODEs

\(31\)

4537

\[ {}\left [\begin {array}{c} x^{\prime \prime }-3 x-4 y=0 \\ x+y^{\prime \prime }+y=0 \end {array}\right ] \]

system_of_ODEs

\(32\)

4550

\[ {}\left [\begin {array}{c} x^{\prime }+4 x+2 y=\frac {2}{{\mathrm e}^{t}-1} \\ 6 x-y^{\prime }+3 y=\frac {3}{{\mathrm e}^{t}-1} \end {array}\right ] \]

system_of_ODEs

\(33\)

4556

\[ {}\left [\begin {array}{c} x^{\prime \prime }+x^{\prime }+y^{\prime }-2 y=40 \,{\mathrm e}^{3 t} \\ x^{\prime }+x-y^{\prime }=36 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c. hint: laplace

system_of_ODEs

\(34\)

4558

\[ {}\left [\begin {array}{c} x^{\prime \prime }+2 x-2 y^{\prime }=0 \\ 3 x^{\prime }+y^{\prime \prime }-8 y=240 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c. hint: laplace

system_of_ODEs

\(35\)

4573

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+2 x_{2} \\ x_{2}^{\prime }=-3 x_{1}+4 x_{2}+\frac {{\mathrm e}^{3 t}}{1+{\mathrm e}^{2 t}} \end {array}\right ] \]

system_of_ODEs

\(36\)

4574

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-4 x_{1}-2 x_{2}+\frac {2}{{\mathrm e}^{t}-1} \\ x_{2}^{\prime }=6 x_{1}+3 x_{2}-\frac {3}{{\mathrm e}^{t}-1} \end {array}\right ] \]

system_of_ODEs

\(37\)

4685

\[ {}y^{\prime }+\left (a x +y\right ) y^{2} = 0 \]

[_Abel]

\(38\)

4686

\[ {}y^{\prime } = \left (a \,{\mathrm e}^{x}+y\right ) y^{2} \]

[_Abel]

\(39\)

4687

\[ {}y^{\prime }+3 a \left (2 x +y\right ) y^{2} = 0 \]

[_Abel]

\(40\)

4714

\[ {}y^{\prime }+x \left (\sin \left (2 y\right )-x^{2} \cos \left (y\right )^{2}\right ) = 0 \]

[‘y=_G(x,y’)‘]

\(41\)

4722

\[ {}y^{\prime } = \tan \left (x \right ) \left (\tan \left (y\right )+\sec \left (x \right ) \sec \left (y\right )\right ) \]

[‘y=_G(x,y’)‘]

\(42\)

4734

\[ {}y^{\prime } = x^{m -1} y^{1-n} f \left (a \,x^{m}+b y^{n}\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(43\)

4796

\[ {}x y^{\prime } = y+x \sqrt {y^{2}+x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(44\)

4797

\[ {}x y^{\prime } = y-x \left (x -y\right ) \sqrt {y^{2}+x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(45\)

4819

\[ {}x y^{\prime }+n y = f \left (x \right ) g \left (x^{n} y\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(46\)

4872

\[ {}x^{2} y^{\prime } = a \,x^{2} y^{2}-a y^{3} \]

[_rational, _Abel]

\(47\)

4873

\[ {}x^{2} y^{\prime }+a y^{2}+b \,x^{2} y^{3} = 0 \]

[_rational, _Abel]

\(48\)

4876

\[ {}x^{2} y^{\prime } = \sec \left (y\right )+3 x \tan \left (y\right ) \]

[‘y=_G(x,y’)‘]

\(49\)

4898

\[ {}\left (-x^{2}+1\right ) y^{\prime } = n \left (1-2 x y+y^{2}\right ) \]

[_rational, _Riccati]

\(50\)

4901

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1+y^{2}-2 x y \left (1+y^{2}\right ) \]

[_rational, _Abel]

\(51\)

4902

\[ {}\left (x^{2}+1\right ) y^{\prime }+x \sin \left (y\right ) \cos \left (y\right ) = x \left (x^{2}+1\right ) \cos \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

\(52\)

4942

\[ {}\left (b x +a \right )^{2} y^{\prime }+c y^{2}+\left (b x +a \right ) y^{3} = 0 \]

[_rational, _Abel]

\(53\)

4952

\[ {}x^{3} y^{\prime } = \cos \left (y\right ) \left (\cos \left (y\right )-2 x^{2} \sin \left (y\right )\right ) \]

[‘y=_G(x,y’)‘]

\(54\)

4980

\[ {}x^{7} y^{\prime }+5 x^{3} y^{2}+2 \left (x^{2}+1\right ) y^{3} = 0 \]

[_rational, _Abel]

\(55\)

5029

\[ {}y^{\prime } y+x +f \left (y^{2}+x^{2}\right ) g \left (x \right ) = 0 \]

[NONE]

\(56\)

5089

\[ {}\left (x +4 x^{3}+5 y\right ) y^{\prime }+7 x^{3}+3 x^{2} y+4 y = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(57\)

5160

\[ {}\left (1-x^{2} y\right ) y^{\prime }-1+x y^{2} = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(58\)

5184

\[ {}x^{7} y y^{\prime } = 2 x^{2}+2+5 x^{3} y \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(59\)

5204

\[ {}\left (x +2 y+y^{2}\right ) y^{\prime }+y \left (y+1\right )+\left (x +y\right )^{2} y^{2} = 0 \]

[_rational]

\(60\)

5273

\[ {}\left (a -3 x^{2}-y^{2}\right ) y y^{\prime }+x \left (a -x^{2}+y^{2}\right ) = 0 \]

[_rational]

\(61\)

5278

\[ {}2 x^{3}+3 x^{2} y+y^{2}-y^{3}+\left (2 y^{3}+3 x y^{2}+x^{2}-x^{3}\right ) y^{\prime } = 0 \]

[_rational]

\(62\)

5310

\[ {}f \left (x \right ) y^{m} y^{\prime }+g \left (x \right ) y^{m +1}+h \left (x \right ) y^{n} = 0 \]

[_Bernoulli]

\(63\)

5320

\[ {}x \left (1-\sqrt {x^{2}-y^{2}}\right ) y^{\prime } = y \]

[‘y=_G(x,y’)‘]

\(64\)

5668

\[ {}a x \sqrt {{y^{\prime }}^{2}+1}+x y^{\prime }-y = 0 \]
hint: dAlembert

[[_homogeneous, ‘class A‘], _dAlembert]

\(65\)

5764

\[ {}y = x y^{\prime }+a x \sqrt {{y^{\prime }}^{2}+1} \]
hint: dAlembert

[[_homogeneous, ‘class A‘], _dAlembert]

\(66\)

5765

\[ {}x -y^{\prime } y = a {y^{\prime }}^{2} \]
hint: dAlembert

[_dAlembert]

\(67\)

5766

\[ {}x +y^{\prime } y = a \sqrt {{y^{\prime }}^{2}+1} \]
hint: dAlembert

[[_1st_order, _with_linear_symmetries], _rational, _dAlembert]

\(68\)

5884

\[ {}\left (x y \sqrt {x^{2}-y^{2}}+x \right ) y^{\prime } = y-x^{2} \sqrt {x^{2}-y^{2}} \]

[NONE]

\(69\)

6018

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (y+1\right ) y^{\prime } = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(70\)

6022

\[ {}y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )} = 0 \]

[_Abel]

\(71\)

6023

\[ {}x^{2} y^{\prime }+x y^{3}+a y^{2} = 0 \]

[_rational, _Abel]

\(72\)

6024

\[ {}\left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2} = 0 \]

[_rational, _Abel]

\(73\)

6418

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+m y = 0 \]

[_Laguerre]

\(74\)

6605

\[ {}x -2 \sin \left (y\right )+3+\left (2 x -4 \sin \left (y\right )-3\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(75\)

6653

\[ {}\left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y = 0 \]

[‘y=_G(x,y’)‘]

\(76\)

6663

\[ {}4 x^{2} y y^{\prime } = 3 x \left (3 y^{2}+2\right )+2 \left (3 y^{2}+2\right )^{3} \]

[_rational]

\(77\)

6780

\[ {}\left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 x y^{\prime }-4 y = 8 \]

[[_3rd_order, _with_linear_symmetries]]

\(78\)

6784

\[ {}\left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right ) = x \]

[[_3rd_order, _exact, _nonlinear]]

\(79\)

6785

\[ {}3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x} \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

\(80\)

6786

\[ {}y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y^{\prime } y = {\mathrm e}^{2 x} \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

\(81\)

6817

\[ {}x^{3} \left (x +1\right ) y^{\prime \prime \prime }-\left (4 x +2\right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0 \]
hint: series

[[_3rd_order, _with_linear_symmetries]]

\(82\)

6818

\[ {}x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y = 0 \]
hint: series

[[_3rd_order, _with_linear_symmetries]]

\(83\)

7157

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(84\)

7172

\[ {}x^{2} \left (x +1\right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(85\)

7190

\[ {}x +y^{\prime } y = a {y^{\prime }}^{2} \]
hint: dAlembert

[_dAlembert]

\(86\)

7204

\[ {}x^{2} y y^{\prime \prime } = x^{2} {y^{\prime }}^{2}-y^{2} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(87\)

7234

\[ {}\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(88\)

7235

\[ {}\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (x +1\right ) \eta ^{\prime }+\left (k +1\right ) \eta = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(89\)

7239

\[ {}-y+x y^{\prime } = x \sqrt {x^{2}-y^{2}}\, y^{\prime } \]

[‘y=_G(x,y’)‘]

\(90\)

7371

\[ {}y^{\prime \prime \prime }-x y = 0 \]
i.c.

[[_3rd_order, _with_linear_symmetries]]

\(91\)

7374

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 \alpha y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(92\)

7836

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+x y = 0 \]
hint: series

[[_3rd_order, _with_linear_symmetries]]

\(93\)

7837

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (x -1\right ) y = 0 \]
hint: series

[[_3rd_order, _with_linear_symmetries]]

\(94\)

7838

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+\left (x^{2}+2 x \right ) y^{\prime }-x y = 0 \]
hint: series

[[_3rd_order, _with_linear_symmetries]]

\(95\)

7839

\[ {}x^{3} y^{\prime \prime \prime }+\left (2 x^{3}-x^{2}\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]
hint: series

[[_3rd_order, _with_linear_symmetries]]

\(96\)

8200

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0 \]
i.c.

[[_2nd_order, _missing_y]]

\(97\)

8248

\[ {}y^{\prime \prime \prime }+x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

\(98\)

8440

\[ {}y^{\prime \prime }+\frac {\left (t^{2}-1\right ) y^{\prime }}{t}+\frac {t^{2} y}{\left (1+{\mathrm e}^{\frac {t^{2}}{2}}\right )^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(99\)

8452

\[ {}y^{2} y^{\prime \prime } = x \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

\(100\)

8479

\[ {}y^{\prime \prime }-y^{\prime } y = 2 x \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(101\)

8491

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(102\)

8492

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(103\)

8493

\[ {}y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(104\)

8522

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(105\)

8525

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(106\)

8526

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(107\)

8527

\[ {}y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(108\)

8532

\[ {}y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(109\)

8534

\[ {}y^{\prime \prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(110\)

8556

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \]

[[_2nd_order, _missing_y]]

\(111\)

8598

\[ {}\left (y-2 x y^{\prime }\right )^{2} = {y^{\prime }}^{3} \]
hint: dAlembert

[[_1st_order, _with_linear_symmetries], _dAlembert]

\(112\)

8629

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(113\)

8631

\[ {}\frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(114\)

8802

\[ {}y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(115\)

8803

\[ {}y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(116\)

8807

\[ {}y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (y^{2}+3\right ) {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(117\)

8812

\[ {}10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(118\)

8820

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(119\)

8835

\[ {}x^{2} y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(120\)

8846

\[ {}y^{\prime \prime \prime }-x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(121\)

9723

\[ {}y^{\prime }-\frac {y^{2} f^{\prime }\left (x \right )}{g \left (x \right )}+\frac {g^{\prime }\left (x \right )}{f \left (x \right )} = 0 \]

[_Riccati]

\(122\)

9726

\[ {}y^{\prime }+y^{3}+a x y^{2} = 0 \]

[_Abel]

\(123\)

9727

\[ {}y^{\prime }-y^{3}-a \,{\mathrm e}^{x} y^{2} = 0 \]

[_Abel]

\(124\)

9730

\[ {}y^{\prime }+3 a y^{3}+6 a x y^{2} = 0 \]

[_Abel]

\(125\)

9732

\[ {}y^{\prime }-x \left (x +2\right ) y^{3}-\left (x +3\right ) y^{2} = 0 \]

[_Abel]

\(126\)

9733

\[ {}y^{\prime }+\left (4 x \,a^{2}+3 a \,x^{2}+b \right ) y^{3}+3 x y^{2} = 0 \]

[_Abel]

\(127\)

9735

\[ {}y^{\prime }+2 \left (a^{2} x^{3}-b^{2} x \right ) y^{3}+3 b y^{2} = 0 \]

[_Abel]

\(128\)

9741

\[ {}y^{\prime }-\left (y-f \left (x \right )\right ) \left (y-g \left (x \right )\right ) \left (y-\frac {a f \left (x \right )+b g \left (x \right )}{a +b}\right ) h \left (x \right )-\frac {f^{\prime }\left (x \right ) \left (y-g \left (x \right )\right )}{f \left (x \right )-g \left (x \right )}-\frac {g^{\prime }\left (x \right ) \left (y-f \left (x \right )\right )}{g \left (x \right )-f \left (x \right )} = 0 \]

[_Abel]

\(129\)

9743

\[ {}y^{\prime }-f \left (x \right )^{1-n} g^{\prime }\left (x \right ) y^{n} \left (a g \left (x \right )+b \right )^{-n}-\frac {f^{\prime }\left (x \right ) y}{f \left (x \right )}-f \left (x \right ) g^{\prime }\left (x \right ) = 0 \]

[_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(130\)

9744

\[ {}y^{\prime }-a^{n} f \left (x \right )^{1-n} g^{\prime }\left (x \right ) y^{n}-\frac {f^{\prime }\left (x \right ) y}{f \left (x \right )}-f \left (x \right ) g^{\prime }\left (x \right ) = 0 \]

[_Chini, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(131\)

9752

\[ {}y^{\prime }-\frac {y-x^{2} \sqrt {x^{2}-y^{2}}}{x y \sqrt {x^{2}-y^{2}}+x} = 0 \]

[NONE]

\(132\)

9770

\[ {}y^{\prime }+f \left (x \right ) \sin \left (y\right )+\left (1-f^{\prime }\left (x \right )\right ) \cos \left (y\right )-f^{\prime }\left (x \right )-1 = 0 \]

[‘y=_G(x,y’)‘]

\(133\)

9771

\[ {}y^{\prime }+2 \tan \left (y\right ) \tan \left (x \right )-1 = 0 \]

[‘y=_G(x,y’)‘]

\(134\)

9773

\[ {}y^{\prime }-\tan \left (x y\right ) = 0 \]

[‘y=_G(x,y’)‘]

\(135\)

9775

\[ {}y^{\prime }-x^{a -1} y^{1-b} f \left (\frac {x^{a}}{a}+\frac {y^{b}}{b}\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(136\)

9801

\[ {}x y^{\prime }+y^{3}+3 x y^{2} = 0 \]

[_rational, _Abel]

\(137\)

9804

\[ {}x y^{\prime }-x \sqrt {y^{2}+x^{2}}-y = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(138\)

9805

\[ {}x y^{\prime }-x \left (y-x \right ) \sqrt {y^{2}+x^{2}}-y = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(139\)

9809

\[ {}x y^{\prime }-y \left (x \ln \left (\frac {x^{2}}{y}\right )+2\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(140\)

9817

\[ {}x y^{\prime }+a y-f \left (x \right ) g \left (x^{a} y\right ) = 0 \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(141\)

9834

\[ {}x^{2} y^{\prime }+a y^{3}-a \,x^{2} y^{2} = 0 \]

[_rational, _Abel]

\(142\)

9835

\[ {}x^{2} y^{\prime }+x y^{3}+a y^{2} = 0 \]

[_rational, _Abel]

\(143\)

9836

\[ {}x^{2} y^{\prime }+a \,x^{2} y^{3}+b y^{2} = 0 \]

[_rational, _Abel]

\(144\)

9840

\[ {}\left (x^{2}+1\right ) y^{\prime }+\left (1+y^{2}\right ) \left (2 x y-1\right ) = 0 \]

[_rational, _Abel]

\(145\)

9841

\[ {}\left (x^{2}+1\right ) y^{\prime }+x \sin \left (y\right ) \cos \left (y\right )-x \left (x^{2}+1\right ) \cos \left (y\right )^{2} = 0 \]

[‘y=_G(x,y’)‘]

\(146\)

9846

\[ {}\left (x^{2}-1\right ) y^{\prime }+a \left (1-2 x y+y^{2}\right ) = 0 \]

[_rational, _Riccati]

\(147\)

9858

\[ {}\left (a x +b \right )^{2} y^{\prime }+\left (a x +b \right ) y^{3}+c y^{2} = 0 \]

[_rational, _Abel]

\(148\)

9874

\[ {}x^{7} y^{\prime }+5 x^{3} y^{2}+2 \left (x^{2}+1\right ) y^{3} = 0 \]

[_rational, _Abel]

\(149\)

9901

\[ {}y^{\prime } y+x +f \left (y^{2}+x^{2}\right ) g \left (x \right ) = 0 \]

[NONE]

\(150\)

9941

\[ {}\left (x^{2} y-1\right ) y^{\prime }-x y^{2}+1 = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(151\)

9946

\[ {}x \left (x y+x^{4}-1\right ) y^{\prime }-y \left (x y-x^{4}-1\right ) = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(152\)

9955

\[ {}\left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime }-a \sqrt {\left (1+y^{2}\right )^{3}} = 0 \]

[‘x=_G(y,y’)‘]

\(153\)

9968

\[ {}\left (x +2 y+y^{2}\right ) y^{\prime }+y \left (y+1\right )+\left (x +y\right )^{2} y^{2} = 0 \]

[_rational]

\(154\)

10001

\[ {}\left (\frac {y^{2}}{b}+\frac {x^{2}}{a}\right ) \left (x +y^{\prime } y\right )+\frac {\left (a -b \right ) \left (y^{\prime } y-x \right )}{a +b} = 0 \]

[_rational]

\(155\)

10002

\[ {}\left (2 a y^{3}+3 a x y^{2}-b \,x^{3}+c \,x^{2}\right ) y^{\prime }-a y^{3}+c y^{2}+3 b \,x^{2} y+2 b \,x^{3} = 0 \]

[_rational]

\(156\)

10039

\[ {}y^{\prime } \cos \left (y\right )-\cos \left (x \right ) \sin \left (y\right )^{2}-\sin \left (y\right ) = 0 \]

unknown

\(157\)

10040

\[ {}y^{\prime } \cos \left (y\right )+x \sin \left (y\right ) \cos \left (y\right )^{2}-\sin \left (y\right )^{3} = 0 \]

[‘y=_G(x,y’)‘]

\(158\)

10046

\[ {}x y^{\prime } \ln \left (x \right ) \sin \left (y\right )+\cos \left (y\right ) \left (1-x \cos \left (y\right )\right ) = 0 \]

[‘y=_G(x,y’)‘]

\(159\)

10055

\[ {}f \left (x^{2}+a y^{2}\right ) \left (a y y^{\prime }+x \right )-y-x y^{\prime } = 0 \]

[_exact]

\(160\)

10093

\[ {}a {y^{\prime }}^{2}+y^{\prime } y-x = 0 \]
hint: dAlembert

[_dAlembert]

\(161\)

10094

\[ {}a {y^{\prime }}^{2}-y^{\prime } y-x = 0 \]
hint: dAlembert

[_dAlembert]

\(162\)

10118

\[ {}\left (\operatorname {a2} x +\operatorname {c2} \right ) {y^{\prime }}^{2}+\left (\operatorname {a1} x +\operatorname {b1} y+\operatorname {c1} \right ) y^{\prime }+\operatorname {a0} x +\operatorname {b0} y+\operatorname {c0} = 0 \]
hint: dAlembert

[_rational, _dAlembert]

\(163\)

10268

\[ {}y^{\prime } = \frac {1+2 F \left (\frac {4 x^{2} y+1}{4 x^{2}}\right ) x}{2 x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(164\)

10269

\[ {}y^{\prime } = \frac {1+F \left (\frac {a x y+1}{a x}\right ) a \,x^{2}}{a \,x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(165\)

10270

\[ {}y^{\prime } = -\frac {\left (a \,x^{2}-2 F \left (y+\frac {a \,x^{4}}{8}\right )\right ) x}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(166\)

10272

\[ {}y^{\prime } = F \left (\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )\right ) y \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(167\)

10273

\[ {}y^{\prime } = \frac {F \left (\frac {y}{\sqrt {x^{2}+1}}\right ) x}{\sqrt {x^{2}+1}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(168\)

10274

\[ {}y^{\prime } = \frac {\left (x^{{3}/{2}}+2 F \left (y-\frac {x^{3}}{6}\right )\right ) \sqrt {x}}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(169\)

10275

\[ {}y^{\prime } = \frac {x +F \left (-\left (x -y\right ) \left (x +y\right )\right )}{y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(170\)

10277

\[ {}y^{\prime } = \frac {x}{-y+F \left (y^{2}+x^{2}\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(171\)

10278

\[ {}y^{\prime } = \frac {F \left (\frac {a y^{2}+b \,x^{2}}{a}\right ) x}{\sqrt {a}\, y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(172\)

10279

\[ {}y^{\prime } = \frac {6 x^{3}+5 \sqrt {x}+5 F \left (y-\frac {2 x^{3}}{5}-2 \sqrt {x}\right )}{5 x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(173\)

10280

\[ {}y^{\prime } = \frac {F \left (y^{{3}/{2}}-\frac {3 \,{\mathrm e}^{x}}{2}\right ) {\mathrm e}^{x}}{\sqrt {y}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(174\)

10281

\[ {}y^{\prime } = \frac {F \left (-\frac {-y^{2}+b}{x^{2}}\right ) x}{y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(175\)

10282

\[ {}y^{\prime } = \frac {F \left (\frac {x y^{2}+1}{x}\right )}{y x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(176\)

10286

\[ {}y^{\prime } = \frac {-x +F \left (y^{2}+x^{2}\right )}{y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(177\)

10288

\[ {}y^{\prime } = \frac {F \left (-\left (x -y\right ) \left (x +y\right )\right ) x}{y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(178\)

10289

\[ {}y^{\prime } = \frac {y^{2} \left (2+F \left (\frac {x^{2}-y}{y x^{2}}\right ) x^{2}\right )}{x^{3}} \]

[NONE]

\(179\)

10290

\[ {}y^{\prime } = \frac {2 F \left (y+\ln \left (2 x +1\right )\right ) x +F \left (y+\ln \left (2 x +1\right )\right )-2}{2 x +1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(180\)

10291

\[ {}y^{\prime } = \frac {2 y^{3}}{1+2 F \left (\frac {4 x y^{2}+1}{y^{2}}\right ) y} \]

[‘x=_G(y,y’)‘]

\(181\)

10293

\[ {}y^{\prime } = -\left (-{\mathrm e}^{-x^{2}}+x^{2} {\mathrm e}^{-x^{2}}-F \left (y-\frac {x^{2} {\mathrm e}^{-x^{2}}}{2}\right )\right ) x \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(182\)

10294

\[ {}y^{\prime } = \frac {2 y+F \left (\frac {y}{x^{2}}\right ) x^{3}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(183\)

10296

\[ {}y^{\prime } = \frac {-3 x^{2} y+F \left (x^{3} y\right )}{x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(184\)

10298

\[ {}y^{\prime } = \frac {-2 x -y+F \left (x \left (x +y\right )\right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(185\)

10300

\[ {}y^{\prime } = \frac {x +y+F \left (-\frac {-y+\ln \left (x \right ) x}{x}\right ) x^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(186\)

10301

\[ {}y^{\prime } = \frac {x \left (a -1\right ) \left (a +1\right )}{y+F \left (\frac {y^{2}}{2}-\frac {a^{2} x^{2}}{2}+\frac {x^{2}}{2}\right ) a^{2}-F \left (\frac {y^{2}}{2}-\frac {a^{2} x^{2}}{2}+\frac {x^{2}}{2}\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(187\)

10302

\[ {}y^{\prime } = \frac {y}{x \left (-1+F \left (x y\right ) y\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(188\)

10304

\[ {}y^{\prime } = \frac {F \left (\frac {\left (y+3\right ) {\mathrm e}^{\frac {3 x^{2}}{2}}}{3 y}\right ) x y^{2} {\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(189\)

10305

\[ {}y^{\prime } = \frac {\left (y+1\right ) \left (\left (y-\ln \left (y+1\right )-\ln \left (x \right )\right ) x +1\right )}{y x} \]

[‘y=_G(x,y’)‘]

\(190\)

10306

\[ {}y^{\prime } = \frac {6 y}{8 y^{4}+9 y^{3}+12 y^{2}+6 y-F \left (-\frac {y^{4}}{3}-\frac {y^{3}}{2}-y^{2}-y+x \right )} \]

[‘x=_G(y,y’)‘]

\(191\)

10312

\[ {}y^{\prime } = \frac {i x^{2} \left (i-2 \sqrt {-x^{3}+6 y}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(192\)

10313

\[ {}y^{\prime } = \frac {x}{y+\sqrt {x^{2}+1}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

\(193\)

10321

\[ {}y^{\prime } = \frac {1+2 x^{5} \sqrt {4 x^{2} y+1}}{2 x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(194\)

10324

\[ {}y^{\prime } = \frac {{\mathrm e}^{-x^{2}} x}{y \,{\mathrm e}^{x^{2}}+1} \]

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(195\)

10325

\[ {}y^{\prime } = -\left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right ) y \]

[‘x=_G(y,y’)‘]

\(196\)

10326

\[ {}y^{\prime } = \left (-\ln \left (\ln \left (y\right )\right )+\ln \left (x \right )\right )^{2} y \]

[‘y=_G(x,y’)‘]

\(197\)

10327

\[ {}y^{\prime } = \frac {y}{\ln \left (\ln \left (y\right )\right )-\ln \left (x \right )+1} \]

[‘y=_G(x,y’)‘]

\(198\)

10328

\[ {}y^{\prime } = \frac {1+2 \sqrt {4 x^{2} y+1}\, x^{4}}{2 x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(199\)

10329

\[ {}y^{\prime } = \frac {\left (-y^{2}+4 a x \right )^{2}}{y} \]

[_rational]

\(200\)

10331

\[ {}y^{\prime } = -\frac {x^{2} \left (a x -2 \sqrt {a \left (a \,x^{4}+8 y\right )}\right )}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(201\)

10334

\[ {}y^{\prime } = \frac {\left (a y^{2}+b \,x^{2}\right )^{2} x}{a^{{5}/{2}} y} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(202\)

10335

\[ {}y^{\prime } = -\frac {x^{3} \left (\sqrt {a}\, x +\sqrt {a}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(203\)

10339

\[ {}y^{\prime } = \frac {2 a +x \sqrt {-y^{2}+4 a x}}{y} \]

[‘y=_G(x,y’)‘]

\(204\)

10350

\[ {}y^{\prime } = \frac {2 a +x^{2} \sqrt {-y^{2}+4 a x}}{y} \]

[‘y=_G(x,y’)‘]

\(205\)

10352

\[ {}y^{\prime } = -\frac {\left (\sqrt {a}\, x^{4}+\sqrt {a}\, x^{3}-2 \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2 \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(206\)

10356

\[ {}y^{\prime } = \frac {\left (-2 y^{{3}/{2}}+3 \,{\mathrm e}^{x}\right )^{2} {\mathrm e}^{x}}{4 \sqrt {y}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(207\)

10357

\[ {}y^{\prime } = \frac {i x \left (i-2 \sqrt {-x^{2}+4 \ln \left (a \right )+4 \ln \left (y\right )}\right ) y}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(208\)

10358

\[ {}y^{\prime } = \frac {\left (x y^{2}+1\right )^{2}}{y x^{4}} \]

[_rational]

\(209\)

10359

\[ {}y^{\prime } = \frac {x^{2} \left (3 x +\sqrt {-9 x^{4}+4 y^{3}}\right )}{y^{2}} \]

[‘y=_G(x,y’)‘]

\(210\)

10363

\[ {}y^{\prime } = \frac {x +1+2 x^{6} \sqrt {4 x^{2} y+1}}{2 x^{3} \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(211\)

10365

\[ {}y^{\prime } = \frac {x^{2} \left (x +1+2 x \sqrt {x^{3}-6 y}\right )}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(212\)

10371

\[ {}y^{\prime } = \frac {y+\sqrt {y^{2}+x^{2}}\, x^{2}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(213\)

10373

\[ {}y^{\prime } = \frac {y^{3} x \,{\mathrm e}^{2 x^{2}}}{y \,{\mathrm e}^{x^{2}}+1} \]

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(214\)

10377

\[ {}y^{\prime } = \frac {-x^{2}+1+4 x^{3} \sqrt {x^{2}-2 x +1+8 y}}{4 x +4} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(215\)

10379

\[ {}y^{\prime } = \frac {y+x^{3} \sqrt {y^{2}+x^{2}}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(216\)

10381

\[ {}y^{\prime } = \frac {x +1+2 \sqrt {4 x^{2} y+1}\, x^{3}}{2 x^{3} \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(217\)

10386

\[ {}y^{\prime } = \frac {x \left (-2 x -2+3 x^{2} \sqrt {x^{2}+3 y}\right )}{3 x +3} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(218\)

10388

\[ {}y^{\prime } = \frac {2 x \,{\mathrm e}^{x}-2 x -\ln \left (x \right )-1+x^{4} \ln \left (x \right )+x^{4}-2 y x^{2} \ln \left (x \right )-2 x^{2} y+y^{2} \ln \left (x \right )+y^{2}}{{\mathrm e}^{x}-1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

\(219\)

10393

\[ {}y^{\prime } = -\frac {\left (-\ln \left (y-1\right )+\ln \left (y+1\right )+2 \ln \left (x \right )\right ) x \left (y+1\right )^{2}}{8} \]

[‘y=_G(x,y’)‘]

\(220\)

10394

\[ {}y^{\prime } = \frac {\left (-\ln \left (y-1\right )+\ln \left (y+1\right )+2 \ln \left (x \right )\right )^{2} x \left (y+1\right )^{2}}{16} \]

[‘y=_G(x,y’)‘]

\(221\)

10396

\[ {}y^{\prime } = \frac {2 a x +2 a +x^{3} \sqrt {-y^{2}+4 a x}}{\left (x +1\right ) y} \]

[‘y=_G(x,y’)‘]

\(222\)

10398

\[ {}y^{\prime } = -\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-1\right ) y}{x +1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(223\)

10399

\[ {}y^{\prime } = \frac {x^{2}+2 x +1+2 x^{3} \sqrt {x^{2}+2 x +1-4 y}}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(224\)

10402

\[ {}y^{\prime } = \frac {-x^{2}+x +2+2 x^{3} \sqrt {x^{2}-4 x +4 y}}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(225\)

10403

\[ {}y^{\prime } = \frac {3 x^{4}+3 x^{3}+\sqrt {9 x^{4}-4 y^{3}}}{\left (x +1\right ) y^{2}} \]

[_rational]

\(226\)

10407

\[ {}y^{\prime } = \frac {x^{3} \left (3 x +3+\sqrt {9 x^{4}-4 y^{3}}\right )}{\left (x +1\right ) y^{2}} \]

[‘y=_G(x,y’)‘]

\(227\)

10414

\[ {}y^{\prime } = \frac {\left (2 x +2+y\right ) y}{\left (\ln \left (y\right )+2 x -1\right ) \left (x +1\right )} \]

[‘x=_G(y,y’)‘]

\(228\)

10417

\[ {}y^{\prime } = \frac {\left (2 y^{{3}/{2}}-3 \,{\mathrm e}^{x}\right )^{3} {\mathrm e}^{x}}{4 \left (2 y^{{3}/{2}}-3 \,{\mathrm e}^{x}+2\right ) \sqrt {y}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(229\)

10419

\[ {}y^{\prime } = \frac {-x^{2}-x -a x -a +2 x^{3} \sqrt {x^{2}+2 a x +a^{2}+4 y}}{2 x +2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(230\)

10421

\[ {}y^{\prime } = \frac {\left (-\ln \left (y\right ) x -\ln \left (y\right )+x^{3}\right ) y}{x +1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(231\)

10424

\[ {}y^{\prime } = \frac {x \left (-1+x -2 x y+2 x^{3}\right )}{x^{2}-y} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(232\)

10427

\[ {}y^{\prime } = \frac {x +y^{4}-2 y^{2} x^{2}+x^{4}}{y} \]

[_rational]

\(233\)

10428

\[ {}y^{\prime } = \frac {\left (a y^{2}+b \,x^{2}\right )^{3} x}{a^{{5}/{2}} \left (a y^{2}+b \,x^{2}+a \right ) y} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(234\)

10429

\[ {}y^{\prime } = -\frac {\cos \left (y\right ) \left (x -\cos \left (y\right )+1\right )}{\left (x \sin \left (y\right )-1\right ) \left (x +1\right )} \]

[‘y=_G(x,y’)‘]

\(235\)

10430

\[ {}y^{\prime } = -\frac {i \left (8 i x +16 y^{4}+8 y^{2} x^{2}+x^{4}\right )}{32 y} \]

[_rational]

\(236\)

10431

\[ {}y^{\prime } = \frac {x}{-y+x^{4}+2 y^{2} x^{2}+y^{4}} \]

[_rational]

\(237\)

10433

\[ {}y^{\prime } = -\frac {i \left (i x +x^{4}+2 y^{2} x^{2}+y^{4}\right )}{y} \]

[_rational]

\(238\)

10436

\[ {}y^{\prime } = \frac {\left (x -y\right )^{2} \left (x +y\right )^{2} x}{y} \]

[_rational]

\(239\)

10439

\[ {}y^{\prime } = \frac {\cos \left (y\right ) \left (\cos \left (y\right ) x^{3}-x -1\right )}{\left (x \sin \left (y\right )-1\right ) \left (x +1\right )} \]

[‘y=_G(x,y’)‘]

\(240\)

10440

\[ {}y^{\prime } = \frac {\left (x +1+x^{4} \ln \left (y\right )\right ) y \ln \left (y\right )}{x \left (x +1\right )} \]

[‘x=_G(y,y’)‘]

\(241\)

10443

\[ {}y^{\prime } = \frac {2 x^{3} y+x^{6}+y^{2} x^{2}+y^{3}}{x^{4}} \]

[_rational, _Abel]

\(242\)

10445

\[ {}y^{\prime } = \frac {\left (2 x +2+x^{3} y\right ) y}{\left (\ln \left (y\right )+2 x -1\right ) \left (x +1\right )} \]

[‘x=_G(y,y’)‘]

\(243\)

10446

\[ {}y^{\prime } = -\frac {i \left (54 i x^{2}+81 y^{4}+18 x^{4} y^{2}+x^{8}\right ) x}{243 y} \]

[_rational]

\(244\)

10447

\[ {}y^{\prime } = \frac {\left (x y^{2}+1\right )^{3}}{x^{4} \left (x y^{2}+1+x \right ) y} \]

[_rational]

\(245\)

10449

\[ {}y^{\prime } = -\frac {\left (\ln \left (y\right ) x +\ln \left (y\right )-x \right ) y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(246\)

10451

\[ {}y^{\prime } = \frac {\left (-\ln \left (y\right ) x -\ln \left (y\right )+x^{4}\right ) y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(247\)

10456

\[ {}y^{\prime } = -\frac {i \left (16 i x^{2}+16 y^{4}+8 x^{4} y^{2}+x^{8}\right ) x}{32 y} \]

[_rational]

\(248\)

10459

\[ {}y^{\prime } = \frac {\left (x +1+\ln \left (y\right ) x \right ) \ln \left (y\right ) y}{x \left (x +1\right )} \]

[‘x=_G(y,y’)‘]

\(249\)

10465

\[ {}y^{\prime } = \frac {-3 x^{2} y+1+y^{2} x^{6}+y^{3} x^{9}}{x^{3}} \]

[_rational, _Abel]

\(250\)

10467

\[ {}y^{\prime } = \frac {x y+y+x \sqrt {y^{2}+x^{2}}}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(251\)

10474

\[ {}y^{\prime } = \frac {x \left (-x -1+x^{2}-2 x^{2} y+2 x^{4}\right )}{\left (x^{2}-y\right ) \left (x +1\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class B‘]]

\(252\)

10478

\[ {}y^{\prime } = \frac {2 x^{2} \cosh \left (\frac {1}{x -1}\right )-2 x \cosh \left (\frac {1}{x -1}\right )-1+y^{2}-2 x^{2} y+x^{4}-x +x y^{2}-2 x^{3} y+x^{5}}{\left (x -1\right ) \cosh \left (\frac {1}{x -1}\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

\(253\)

10481

\[ {}y^{\prime } = \frac {y}{x \left (-1+y+y^{3} x^{2}+y^{4} x^{3}\right )} \]

[_rational]

\(254\)

10483

\[ {}y^{\prime } = \frac {y^{3} x \,{\mathrm e}^{3 x^{2}} {\mathrm e}^{-\frac {9 x^{2}}{2}}}{9 \,{\mathrm e}^{\frac {3 x^{2}}{2}}+3 \,{\mathrm e}^{\frac {3 x^{2}}{2}} y+9 y} \]

[[_Abel, ‘2nd type‘, ‘class C‘]]

\(255\)

10485

\[ {}y^{\prime } = \frac {\left (x +y+1\right ) y}{\left (2 y^{3}+y+x \right ) \left (x +1\right )} \]

[_rational]

\(256\)

10489

\[ {}y^{\prime } = -\frac {-\frac {1}{x}-\textit {\_F1} \left (y+\frac {1}{x}\right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(257\)

10490

\[ {}y^{\prime } = \frac {\textit {\_F1} \left (y^{2}-2 \ln \left (x \right )\right )}{\sqrt {y^{2}}\, x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(258\)

10491

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right ) x -\sin \left (2 y\right )+\cos \left (2 y\right ) x^{4}+x^{4}}{2 x \left (x +1\right )} \]

[‘y=_G(x,y’)‘]

\(259\)

10492

\[ {}y^{\prime } = \frac {x y+y+x^{4} \sqrt {y^{2}+x^{2}}}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(260\)

10493

\[ {}y^{\prime } = \frac {-\sin \left (2 y\right ) x -\sin \left (2 y\right )+x \cos \left (2 y\right )+x}{2 x \left (x +1\right )} \]

[‘y=_G(x,y’)‘]

\(261\)

10494

\[ {}y^{\prime } = -\frac {1}{-x -\textit {\_F1} \left (y-\ln \left (x \right )\right ) y \,{\mathrm e}^{y}} \]

[NONE]

\(262\)

10498

\[ {}y^{\prime } = \frac {x^{3} {\mathrm e}^{y}+x^{4}+y \,{\mathrm e}^{y}-{\mathrm e}^{y} \ln \left ({\mathrm e}^{y}+x \right )+x y-\ln \left ({\mathrm e}^{y}+x \right ) x +x}{x^{2}} \]

[‘y=_G(x,y’)‘]

\(263\)

10499

\[ {}y^{\prime } = \frac {x^{2}}{2}+\sqrt {x^{3}-6 y}+x^{2} \sqrt {x^{3}-6 y}+x^{3} \sqrt {x^{3}-6 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(264\)

10500

\[ {}y^{\prime } = \frac {\left (-\sqrt {a}\, x^{3}+2 \sqrt {a \,x^{4}+8 y}+2 x^{2} \sqrt {a \,x^{4}+8 y}+2 x^{3} \sqrt {a \,x^{4}+8 y}\right ) \sqrt {a}}{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(265\)

10501

\[ {}y^{\prime } = \frac {y \left (-3 x^{3} y-3+y^{2} x^{7}\right )}{x \left (x^{3} y+1\right )} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(266\)

10502

\[ {}y^{\prime } = \frac {\left (y+3\right )^{3} {\mathrm e}^{\frac {9 x^{2}}{2}} x \,{\mathrm e}^{\frac {3 x^{2}}{2}} {\mathrm e}^{-3 x^{2}}}{243 \,{\mathrm e}^{\frac {3 x^{2}}{2}}+81 \,{\mathrm e}^{\frac {3 x^{2}}{2}} y+243 y} \]

[[_Abel, ‘2nd type‘, ‘class C‘]]

\(267\)

10503

\[ {}y^{\prime } = \frac {\left (x -y\right )^{3} \left (x +y\right )^{3} x}{\left (-y^{2}+x^{2}-1\right ) y} \]

[_rational]

\(268\)

10504

\[ {}y^{\prime } = \frac {-2 \cos \left (y\right )+x^{3} \cos \left (2 y\right ) \ln \left (x \right )+x^{3} \ln \left (x \right )}{2 \sin \left (y\right ) \ln \left (x \right ) x} \]

[‘y=_G(x,y’)‘]

\(269\)

10506

\[ {}y^{\prime } = -\frac {2 x}{3}+\sqrt {x^{2}+3 y}+x^{2} \sqrt {x^{2}+3 y}+x^{3} \sqrt {x^{2}+3 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(270\)

10507

\[ {}y^{\prime } = \frac {-2 \cos \left (y\right )+x^{2} \cos \left (2 y\right ) \ln \left (x \right )+x^{2} \ln \left (x \right )}{2 \sin \left (y\right ) \ln \left (x \right ) x} \]

[‘y=_G(x,y’)‘]

\(271\)

10512

\[ {}y^{\prime } = \frac {\left (\left (x^{2}+1\right )^{{3}/{2}} x^{2}+\left (x^{2}+1\right )^{{3}/{2}}+y^{2} \left (x^{2}+1\right )^{{3}/{2}}+y^{3} x^{2}+y^{3}\right ) x}{\left (x^{2}+1\right )^{3}} \]

[_Abel]

\(272\)

10513

\[ {}y^{\prime } = \frac {\left (3 x y^{2}+x +3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x \left (x +1\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(273\)

10514

\[ {}y^{\prime } = -\frac {-y+x^{3} \sqrt {y^{2}+x^{2}}-x^{2} \sqrt {y^{2}+x^{2}}\, y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(274\)

10516

\[ {}y^{\prime } = \frac {1+2 \sqrt {4 x^{2} y+1}\, x^{3}+2 x^{5} \sqrt {4 x^{2} y+1}+2 x^{6} \sqrt {4 x^{2} y+1}}{2 x^{3}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(275\)

10518

\[ {}y^{\prime } = \frac {2 a +\sqrt {-y^{2}+4 a x}+x^{2} \sqrt {-y^{2}+4 a x}+x^{3} \sqrt {-y^{2}+4 a x}}{y} \]

[‘y=_G(x,y’)‘]

\(276\)

10519

\[ {}y^{\prime } = \frac {\left (x +y+1\right ) y}{\left (y^{4}+y^{3}+y^{2}+x \right ) \left (x +1\right )} \]

[_rational]

\(277\)

10520

\[ {}y^{\prime } = -\frac {-y+x^{4} \sqrt {y^{2}+x^{2}}-x^{3} \sqrt {y^{2}+x^{2}}\, y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(278\)

10521

\[ {}y^{\prime } = \frac {\left (x^{4}+3 x y^{2}+3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x \left (x +1\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(279\)

10528

\[ {}y^{\prime } = \frac {b \,x^{3}+c^{2} \sqrt {a}-2 c b \,x^{2} \sqrt {a}+2 c y^{2} a^{{3}/{2}}+b^{2} x^{4} \sqrt {a}-2 y^{2} a^{{3}/{2}} b \,x^{2}+a^{{5}/{2}} y^{4}}{a \,x^{2} y} \]

[_rational]

\(280\)

10532

\[ {}y^{\prime } = \frac {3 x^{3}+\sqrt {-9 x^{4}+4 y^{3}}+x^{2} \sqrt {-9 x^{4}+4 y^{3}}+x^{3} \sqrt {-9 x^{4}+4 y^{3}}}{y^{2}} \]

[NONE]

\(281\)

10533

\[ {}y^{\prime } = \frac {1}{-x +\left (\frac {1}{y}+1\right ) x +\textit {\_F1} \left (\left (\frac {1}{y}+1\right ) x \right ) x^{2}-\textit {\_F1} \left (\left (\frac {1}{y}+1\right ) x \right ) x^{2} \left (\frac {1}{y}+1\right )} \]

[‘y=_G(x,y’)‘]

\(282\)

10534

\[ {}y^{\prime } = \frac {x}{2}+\frac {1}{2}+\sqrt {x^{2}+2 x +1-4 y}+x^{2} \sqrt {x^{2}+2 x +1-4 y}+x^{3} \sqrt {x^{2}+2 x +1-4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(283\)

10535

\[ {}y^{\prime } = \frac {\cosh \left (x \right )}{\sinh \left (x \right )}+\textit {\_F1} \left (y-\ln \left (\sinh \left (x \right )\right )\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(284\)

10536

\[ {}y^{\prime } = -\frac {x}{2}+1+\sqrt {x^{2}-4 x +4 y}+x^{2} \sqrt {x^{2}-4 x +4 y}+x^{3} \sqrt {x^{2}-4 x +4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(285\)

10537

\[ {}y^{\prime } = \frac {1}{\sin \left (x \right )}+\textit {\_F1} \left (y-\ln \left (\sin \left (x \right )\right )+\ln \left (\cos \left (x \right )+1\right )\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(286\)

10541

\[ {}y^{\prime } = \frac {y \left (\ln \left (x \right )+\ln \left (y\right )-1+x^{2} \ln \left (x \right )^{2}+2 x^{2} \ln \left (y\right ) \ln \left (x \right )+x^{2} \ln \left (y\right )^{2}\right )}{x} \]

[NONE]

\(287\)

10542

\[ {}y^{\prime } = \frac {y \left (\ln \left (y\right )-1+\ln \left (x \right )+x^{3} \ln \left (x \right )^{2}+2 x^{3} \ln \left (y\right ) \ln \left (x \right )+x^{3} \ln \left (y\right )^{2}\right )}{x} \]

[NONE]

\(288\)

10543

\[ {}y^{\prime } = -\frac {\left (-\frac {1}{x}-\textit {\_F1} \left (y^{2}-2 x \right )\right ) x}{\sqrt {y^{2}}} \]

[NONE]

\(289\)

10544

\[ {}y^{\prime } = -\frac {x}{4}+\frac {1}{4}+\sqrt {x^{2}-2 x +1+8 y}+x^{2} \sqrt {x^{2}-2 x +1+8 y}+x^{3} \sqrt {x^{2}-2 x +1+8 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(290\)

10546

\[ {}y^{\prime } = -\frac {-x -\textit {\_F1} \left (y^{2}-2 x \right )}{\sqrt {y^{2}}\, x} \]

[NONE]

\(291\)

10548

\[ {}y^{\prime } = -\frac {\left (-\frac {y \,{\mathrm e}^{\frac {1}{x}}}{x}-\textit {\_F1} \left (y \,{\mathrm e}^{\frac {1}{x}}\right )\right ) {\mathrm e}^{-\frac {1}{x}}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(292\)

10549

\[ {}y^{\prime } = \frac {y+x \sqrt {y^{2}+x^{2}}+x^{3} \sqrt {y^{2}+x^{2}}+x^{4} \sqrt {y^{2}+x^{2}}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(293\)

10551

\[ {}y^{\prime } = \left (\frac {\ln \left (y-1\right ) y}{\left (1-y\right ) \ln \left (x \right ) x}-\frac {\ln \left (y-1\right )}{\left (1-y\right ) \ln \left (x \right ) x}-f \left (x \right )\right ) \left (1-y\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(294\)

10552

\[ {}y^{\prime } = -\frac {x}{2}-\frac {a}{2}+\sqrt {x^{2}+2 a x +a^{2}+4 y}+x^{2} \sqrt {x^{2}+2 a x +a^{2}+4 y}+x^{3} \sqrt {x^{2}+2 a x +a^{2}+4 y} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

\(295\)

10555

\[ {}y^{\prime } = \frac {-x +1-2 y+3 x^{2}-2 x^{2} y+2 x^{4}+x^{3}-2 x^{3} y+2 x^{5}}{x^{2}-y} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(296\)

10556

\[ {}y^{\prime } = \frac {\left ({\mathrm e}^{-\frac {y}{x}} y+x \,{\mathrm e}^{-\frac {y}{x}}+x +x^{3}+x^{4}\right ) {\mathrm e}^{\frac {y}{x}}}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(297\)

10561

\[ {}y^{\prime } = -\frac {-x y-y+x^{5} \sqrt {y^{2}+x^{2}}-x^{4} \sqrt {y^{2}+x^{2}}\, y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(298\)

10564

\[ {}y^{\prime } = \frac {1+y^{4}-8 a x y^{2}+16 a^{2} x^{2}+y^{6}-12 y^{4} a x +48 y^{2} a^{2} x^{2}-64 a^{3} x^{3}}{y} \]

[_rational]

\(299\)

10565

\[ {}y^{\prime } = -\frac {-x y-y+\sqrt {y^{2}+x^{2}}\, x^{2}-x \sqrt {y^{2}+x^{2}}\, y}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(300\)

10569

\[ {}y^{\prime } = \frac {\left (a^{3}+y^{4} a^{3}+2 y^{2} a^{2} b \,x^{2}+a \,x^{4} b^{2}+y^{6} a^{3}+3 y^{4} a^{2} b \,x^{2}+3 y^{2} a \,b^{2} x^{4}+b^{3} x^{6}\right ) x}{a^{{7}/{2}} y} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(301\)

10570

\[ {}y^{\prime } = -\frac {\left (-1-y^{4}+2 y^{2} x^{2}-x^{4}-y^{6}+3 x^{2} y^{4}-3 x^{4} y^{2}+x^{6}\right ) x}{y} \]

[_rational]

\(302\)

10575

\[ {}y^{\prime } = -\frac {\left (-8-8 y^{3}+24 y^{{3}/{2}} {\mathrm e}^{x}-18 \,{\mathrm e}^{2 x}-8 y^{{9}/{2}}+36 y^{3} {\mathrm e}^{x}-54 y^{{3}/{2}} {\mathrm e}^{2 x}+27 \,{\mathrm e}^{3 x}\right ) {\mathrm e}^{x}}{8 \sqrt {y}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘]]

\(303\)

10576

\[ {}y^{\prime } = \frac {x}{-y+1+y^{4}+2 y^{2} x^{2}+x^{4}+y^{6}+3 x^{2} y^{4}+3 x^{4} y^{2}+x^{6}} \]

[_rational]

\(304\)

10577

\[ {}y^{\prime } = \frac {y^{2} \left (-2 y+2 x^{2}+2 x^{2} y+y x^{4}\right )}{x^{3} \left (x^{2}-y+x^{2} y\right )} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

\(305\)

10579

\[ {}y^{\prime } = \frac {6 x +x^{3}+x^{3} y^{2}+4 x^{2} y+x^{3} y^{3}+6 y^{2} x^{2}+12 x y+8}{x^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

\(306\)

10581

\[ {}y^{\prime } = \frac {\left (-256 a \,x^{2} y-32 a^{2} x^{6}-256 a \,x^{2}+512 y^{3}+192 x^{4} a y^{2}+24 y a^{2} x^{8}+a^{3} x^{12}\right ) x}{512 y+64 a \,x^{4}+512} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(307\)

10582

\[ {}y^{\prime } = \frac {x +1+y^{4}-2 y^{2} x^{2}+x^{4}+y^{6}-3 x^{2} y^{4}+3 x^{4} y^{2}-x^{6}}{y} \]

[_rational]

\(308\)

10583

\[ {}y^{\prime } = \frac {\left (-108 x^{{3}/{2}} y+18 x^{{9}/{2}}-108 x^{{3}/{2}}-216 y^{3}+108 x^{3} y^{2}-18 y x^{6}+x^{9}\right ) \sqrt {x}}{-216 y+36 x^{3}-216} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(309\)

10584

\[ {}y^{\prime } = \frac {32 x^{5} y+8 x^{3}+32 x^{5}+64 x^{6} y^{3}+48 x^{4} y^{2}+12 x^{2} y+1}{16 x^{6} \left (4 x^{2} y+1+4 x^{2}\right )} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(310\)

10588

\[ {}y^{\prime } = \frac {-x y^{2}+x^{3}-x -y^{6}+3 x^{2} y^{4}-3 x^{4} y^{2}+x^{6}}{\left (-y^{2}+x^{2}-1\right ) y} \]

[_rational]

\(311\)

10591

\[ {}y^{\prime } = \frac {x \,a^{2}+a^{3} x^{3}+a^{3} x^{3} y^{2}+2 a^{2} x^{2} y+a x +y^{3} a^{3} x^{3}+3 y^{2} a^{2} x^{2}+3 a x y+1}{a^{3} x^{3}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

\(312\)

10592

\[ {}y^{\prime } = \frac {x \left (1+x^{2}+y^{2}\right )}{-y^{3}-x^{2} y-y+y^{6}+3 x^{2} y^{4}+3 x^{4} y^{2}+x^{6}} \]

[_rational]

\(313\)

10594

\[ {}y^{\prime } = \frac {4 x \left (a -1\right ) \left (a +1\right )}{4 y+a^{2} y^{4}-2 a^{4} y^{2} x^{2}+4 y^{2} a^{2} x^{2}+a^{6} x^{4}-3 a^{4} x^{4}+3 a^{2} x^{4}-y^{4}-2 y^{2} x^{2}-x^{4}} \]

[_rational]

\(314\)

10595

\[ {}y^{\prime } = \frac {x^{3}+y^{4} x^{3}+2 y^{2} x^{2}+x +x^{3} y^{6}+3 x^{2} y^{4}+3 x y^{2}+1}{x^{5} y} \]

[_rational]

\(315\)

10596

\[ {}y^{\prime } = \frac {-2 x -y+1+y^{2} x^{2}+2 x^{3} y+x^{4}+x^{3} y^{3}+3 x^{4} y^{2}+3 x^{5} y+x^{6}}{x} \]

[_rational, _Abel]

\(316\)

10602

\[ {}y^{\prime } = \frac {y \left (\ln \left (y\right ) x +\ln \left (y\right )-x -1+\ln \left (x \right ) x +\ln \left (x \right )+x^{4} \ln \left (x \right )^{2}+2 x^{4} \ln \left (y\right ) \ln \left (x \right )+x^{4} \ln \left (y\right )^{2}\right )}{x \left (x +1\right )} \]

[NONE]

\(317\)

10603

\[ {}y^{\prime } = \frac {y \left (\ln \left (x \right ) x +\ln \left (x \right )+\ln \left (y\right ) x +\ln \left (y\right )-x -1+x \ln \left (x \right )^{2}+2 x \ln \left (y\right ) \ln \left (x \right )+x \ln \left (y\right )^{2}\right )}{x \left (x +1\right )} \]

[NONE]

\(318\)

10614

\[ {}y^{\prime } = \frac {\left ({\mathrm e}^{-\frac {y}{x}} y x +{\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x^{2}+x \,{\mathrm e}^{-\frac {y}{x}}+x \right ) {\mathrm e}^{\frac {y}{x}}}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(319\)

10616

\[ {}y^{\prime } = \frac {\left ({\mathrm e}^{-\frac {y}{x}} y x +{\mathrm e}^{-\frac {y}{x}} y+{\mathrm e}^{-\frac {y}{x}} x^{2}+x \,{\mathrm e}^{-\frac {y}{x}}+x^{4}\right ) {\mathrm e}^{\frac {y}{x}}}{x \left (x +1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(320\)

10618

\[ {}y^{\prime } = \frac {\left (27 y^{3}+27 \,{\mathrm e}^{3 x^{2}} y+18 \,{\mathrm e}^{3 x^{2}} y^{2}+3 y^{3} {\mathrm e}^{3 x^{2}}+27 \,{\mathrm e}^{\frac {9 x^{2}}{2}}+27 \,{\mathrm e}^{\frac {9 x^{2}}{2}} y+9 \,{\mathrm e}^{\frac {9 x^{2}}{2}} y^{2}+{\mathrm e}^{\frac {9 x^{2}}{2}} y^{3}\right ) {\mathrm e}^{3 x^{2}} x \,{\mathrm e}^{-\frac {9 x^{2}}{2}}}{243 y} \]

[[_Abel, ‘2nd type‘, ‘class C‘]]

\(321\)

10619

\[ {}y^{\prime } = -\frac {-x^{2}-x y-x^{3}-x y^{2}+2 y x^{2} \ln \left (x \right )-x^{3} \ln \left (x \right )^{2}-y^{3}+3 x y^{2} \ln \left (x \right )-3 x^{2} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right )^{3}}{x^{2}} \]

[_Abel]

\(322\)

10623

\[ {}y^{\prime } = \frac {-2 y-2 \ln \left (2 x +1\right )-2+2 x y^{3}+y^{3}+6 y^{2} \ln \left (2 x +1\right ) x +3 y^{2} \ln \left (2 x +1\right )+6 y \ln \left (2 x +1\right )^{2} x +3 y \ln \left (2 x +1\right )^{2}+2 \ln \left (2 x +1\right )^{3} x +\ln \left (2 x +1\right )^{3}}{\left (2 x +1\right ) \left (y+\ln \left (2 x +1\right )+1\right )} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(323\)

10626

\[ {}y^{\prime } = \frac {y \ln \left (x \right ) x +x^{2} \ln \left (x \right )-2 x y-x^{2}-y^{2}-y^{3}+3 x y^{2} \ln \left (x \right )-3 x^{2} \ln \left (x \right )^{2} y+x^{3} \ln \left (x \right )^{3}}{x \left (-y+\ln \left (x \right ) x -x \right )} \]

[[_Abel, ‘2nd type‘, ‘class C‘], [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(324\)

10632

\[ {}y^{\prime } = \frac {\left (-8 \,{\mathrm e}^{-x^{2}} y+4 x^{2} {\mathrm e}^{-2 x^{2}}-8 \,{\mathrm e}^{-x^{2}}+8 x^{2} {\mathrm e}^{-x^{2}} y-4 x^{4} {\mathrm e}^{-2 x^{2}}+8 x^{2} {\mathrm e}^{-x^{2}}-8 y^{3}+12 x^{2} {\mathrm e}^{-x^{2}} y^{2}-6 y x^{4} {\mathrm e}^{-2 x^{2}}+x^{6} {\mathrm e}^{-3 x^{2}}\right ) x}{-8 y+4 x^{2} {\mathrm e}^{-x^{2}}-8} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class C‘]]

\(325\)

10638

\[ {}y^{\prime } = -\frac {-y+\sqrt {y^{2}+x^{2}}\, x^{2}-x \sqrt {y^{2}+x^{2}}\, y+x^{4} \sqrt {y^{2}+x^{2}}-x^{3} \sqrt {y^{2}+x^{2}}\, y+x^{5} \sqrt {y^{2}+x^{2}}-x^{4} \sqrt {y^{2}+x^{2}}\, y}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(326\)

10639

\[ {}y^{\prime } = \frac {y \left (\ln \left (x \right )+\ln \left (y\right )-1+x \ln \left (x \right )^{2}+2 x \ln \left (y\right ) \ln \left (x \right )+x \ln \left (y\right )^{2}+x^{3} \ln \left (x \right )^{2}+2 x^{3} \ln \left (y\right ) \ln \left (x \right )+x^{3} \ln \left (y\right )^{2}+x^{4} \ln \left (x \right )^{2}+2 x^{4} \ln \left (y\right ) \ln \left (x \right )+x^{4} \ln \left (y\right )^{2}\right )}{x} \]

[NONE]

\(327\)

10641

\[ {}y^{\prime } = \frac {-150 x^{3} y+60 x^{6}+350 x^{{7}/{2}}-150 x^{3}-125 y \sqrt {x}+250 x -125 \sqrt {x}-125 y^{3}+150 x^{3} y^{2}+750 y^{2} \sqrt {x}-60 y x^{6}-600 y x^{{7}/{2}}-1500 x y+8 x^{9}+120 x^{{13}/{2}}+600 x^{4}+1000 x^{{3}/{2}}}{25 \left (-5 y+2 x^{3}+10 \sqrt {x}-5\right ) x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class C‘]]

\(328\)

10642

\[ {}y^{\prime } = \frac {y \left (-1-x^{\frac {2}{\ln \left (x \right )+1}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{\ln \left (x \right )+1}} x^{2}-x^{\frac {2}{\ln \left (x \right )+1}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{\ln \left (x \right )+1}} x^{2} \ln \left (x \right )+x^{\frac {2}{\ln \left (x \right )+1}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{\ln \left (x \right )+1}} x^{2} y+2 x^{\frac {2}{\ln \left (x \right )+1}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{\ln \left (x \right )+1}} x^{2} y \ln \left (x \right )+x^{\frac {2}{\ln \left (x \right )+1}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{\ln \left (x \right )+1}} x^{2} y \ln \left (x \right )^{2}\right )}{\left (\ln \left (x \right )+1\right ) x} \]

[_Bernoulli]

\(329\)

10643

\[ {}y^{\prime } = \frac {y \left (-1-x^{3} x^{\frac {2}{\ln \left (x \right )+1}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{\ln \left (x \right )+1}}-x^{3} x^{\frac {2}{\ln \left (x \right )+1}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{\ln \left (x \right )+1}} \ln \left (x \right )+x^{3} x^{\frac {2}{\ln \left (x \right )+1}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{\ln \left (x \right )+1}} y+2 x^{3} x^{\frac {2}{\ln \left (x \right )+1}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{\ln \left (x \right )+1}} y \ln \left (x \right )+x^{3} x^{\frac {2}{\ln \left (x \right )+1}} {\mathrm e}^{\frac {2 \ln \left (x \right )^{2}}{\ln \left (x \right )+1}} y \ln \left (x \right )^{2}\right )}{\left (\ln \left (x \right )+1\right ) x} \]

[_Bernoulli]

\(330\)

10644

\[ {}y^{\prime } = \frac {2 x +4 y \ln \left (2 x +1\right ) x +6 y^{2} \ln \left (2 x +1\right ) x +6 y \ln \left (2 x +1\right )^{2} x +2 \ln \left (2 x +1\right )^{3} x +2 x y^{3}+2 \ln \left (2 x +1\right )^{2} x +2 x y^{2}-1+3 y^{2} \ln \left (2 x +1\right )+3 y \ln \left (2 x +1\right )^{2}+y^{2}+y^{3}+2 y \ln \left (2 x +1\right )+\ln \left (2 x +1\right )^{2}+\ln \left (2 x +1\right )^{3}}{2 x +1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Abel]

\(331\)

10648

\[ {}y^{\prime } = \frac {4 x \left (a -1\right ) \left (a +1\right ) \left (-y^{2}+a^{2} x^{2}-x^{2}-2\right )}{-4 y^{3}+4 a^{2} x^{2} y-4 x^{2} y-8 y-a^{2} y^{6}+3 a^{4} y^{4} x^{2}-6 y^{4} a^{2} x^{2}-3 a^{6} y^{2} x^{4}+9 y^{2} a^{4} x^{4}-9 y^{2} a^{2} x^{4}+a^{8} x^{6}-4 a^{6} x^{6}+6 a^{4} x^{6}-4 a^{2} x^{6}+y^{6}+3 x^{2} y^{4}+3 x^{4} y^{2}+x^{6}} \]

[_rational]

\(332\)

10650

\[ {}y^{\prime } = -\frac {8 x \left (a -1\right ) \left (a +1\right )}{8+x^{6}+2 x^{4}-8 y-8 a^{2}-4 a^{2} x^{6}+3 x^{4} y^{2}+3 x^{2} y^{4}-2 a^{2} y^{4}-2 a^{6} x^{4}+6 a^{4} x^{4}-6 a^{2} x^{4}+4 y^{2} x^{2}+2 y^{4}+y^{6}+4 a^{4} y^{2} x^{2}-a^{2} y^{6}+a^{8} x^{6}-4 a^{6} x^{6}+6 a^{4} x^{6}+3 a^{4} y^{4} x^{2}-6 y^{4} a^{2} x^{2}-3 a^{6} y^{2} x^{4}+9 y^{2} a^{4} x^{4}-9 y^{2} a^{2} x^{4}-8 y^{2} a^{2} x^{2}} \]

[_rational]

\(333\)

10656

\[ {}y^{\prime } = -\frac {216 y \left (-2 y^{4}-3 y^{3}-6 y^{2}-6 y+6 x +6\right )}{216 x^{3}-1944 x y^{2}-1296 x y-648 x y^{3}-324 y^{3} x^{2}-432 x y^{4}+1728 y^{3}-1296 y^{2}-1296 y+1080 y^{5} x -216 x^{2} y^{4}-648 x^{2} y-648 y^{2} x^{2}+2808 y^{4}+2484 y^{6}+72 y^{8} x +216 y^{7} x +594 x y^{6}-18 y^{8}+594 y^{7}+4428 y^{5}-126 y^{10}-315 y^{9}-8 y^{12}-36 y^{11}} \]

[_rational]

\(334\)

10658

\[ {}y^{\prime } = \frac {x \left (-x^{2}+2 x^{2} y-2 x^{4}+1\right )}{y-x^{2}} \]

[_rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

\(335\)

10662

\[ {}y^{\prime } = \frac {y \left (y^{2} x^{7}+y x^{4}+x -3\right )}{x} \]

[_rational, _Abel]

\(336\)

10670

\[ {}y^{\prime } = \frac {y \left (y^{2} x^{2}+y x \,{\mathrm e}^{x}+{\mathrm e}^{2 x}\right ) {\mathrm e}^{-2 x} \left (x -1\right )}{x} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], _Abel]

\(337\)

10698

\[ {}y^{\prime \prime }-\left (x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(338\)

10702

\[ {}y^{\prime \prime }+\left (a \,x^{2 c}+b \,x^{c -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(339\)

10706

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{2 x}+b \,{\mathrm e}^{x}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(340\)

10707

\[ {}y^{\prime \prime }+\left (a \cosh \left (x \right )^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(341\)

10708

\[ {}y^{\prime \prime }+\left (a \cos \left (2 x \right )+b \right ) y = 0 \]

[_ellipsoidal]

\(342\)

10709

\[ {}y^{\prime \prime }+\left (a \cos \left (x \right )^{2}+b \right ) y = 0 \]

[_ellipsoidal]

\(343\)

10710

\[ {}y^{\prime \prime }-\left (1+2 \tan \left (x \right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(344\)

10711

\[ {}y^{\prime \prime }-\left (\frac {m \left (m -1\right )}{\cos \left (x \right )^{2}}+\frac {n \left (n -1\right )}{\sin \left (x \right )^{2}}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(345\)

10713

\[ {}y^{\prime \prime }-\left (n \left (n +1\right ) k^{2} \operatorname {JacobiSN}\left (x , k\right )^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(346\)

10715

\[ {}y^{\prime \prime }-\left (f \left (x \right )^{2}+f^{\prime }\left (x \right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(347\)

10722

\[ {}y^{\prime \prime }+a y^{\prime }-\left (b^{2} x^{2}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(348\)

10726

\[ {}y^{\prime \prime }+x y^{\prime }+\left (n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(349\)

10727

\[ {}y^{\prime \prime }+x y^{\prime }-n y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(350\)

10729

\[ {}y^{\prime \prime }-x y^{\prime }-a y = 0 \]

[_Hermite]

\(351\)

10731

\[ {}y^{\prime \prime }-2 x y^{\prime }+a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(352\)

10733

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (3 x^{2}+2 n -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(353\)

10737

\[ {}y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(354\)

10739

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(355\)

10740

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(356\)

10745

\[ {}y^{\prime \prime }+a \,x^{q -1} y^{\prime }+b \,x^{q -2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(357\)

10750

\[ {}y^{\prime \prime }+2 n y^{\prime } \cot \left (x \right )+\left (-a^{2}+n^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(358\)

10753

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+v \left (v +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(359\)

10755

\[ {}y^{\prime \prime }+a y^{\prime } \tan \left (x \right )+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(360\)

10764

\[ {}y^{\prime \prime }-\left (\frac {f^{\prime }\left (x \right )}{f \left (x \right )}+2 a \right ) y^{\prime }+\left (\frac {a f^{\prime }\left (x \right )}{f \left (x \right )}+a^{2}-b^{2} f \left (x \right )^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(361\)

10766

\[ {}y^{\prime \prime }-\left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right ) y^{\prime }+\left (\frac {f^{\prime }\left (x \right ) \left (\frac {2 f^{\prime }\left (x \right )}{f \left (x \right )}+\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}-\frac {g^{\prime }\left (x \right )}{g \left (x \right )}\right )}{f \left (x \right )}-\frac {f^{\prime \prime }\left (x \right )}{f \left (x \right )}-\frac {v^{2} {g^{\prime }\left (x \right )}^{2}}{g \left (x \right )^{2}}+{g^{\prime }\left (x \right )}^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(362\)

10767

\[ {}y^{\prime \prime }-\left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right ) y^{\prime }+\left (\frac {h^{\prime }\left (x \right ) \left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right )}{h \left (x \right )}-\frac {h^{\prime \prime }\left (x \right )}{h \left (x \right )}+{g^{\prime }\left (x \right )}^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(363\)

10769

\[ {}4 y^{\prime \prime }-\left (x^{2}+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(364\)

10770

\[ {}4 y^{\prime \prime }+4 y^{\prime } \tan \left (x \right )-\left (5 \tan \left (x \right )^{2}+2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(365\)

10771

\[ {}a y^{\prime \prime }-\left (a b +c +x \right ) y^{\prime }+\left (b \left (x +c \right )+d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(366\)

10774

\[ {}x y^{\prime \prime }+\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(367\)

10778

\[ {}x y^{\prime \prime }+y^{\prime }+\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(368\)

10781

\[ {}x y^{\prime \prime }-y^{\prime }+x^{3} \left ({\mathrm e}^{x^{2}}-v^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(369\)

10789

\[ {}x y^{\prime \prime }+\left (x +b \right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(370\)

10790

\[ {}x y^{\prime \prime }+\left (x +a +b \right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(371\)

10792

\[ {}x y^{\prime \prime }-x y^{\prime }-a y = 0 \]

[_Laguerre]

\(372\)

10795

\[ {}x y^{\prime \prime }+\left (b -x \right ) y^{\prime }-a y = 0 \]

[_Laguerre]

\(373\)

10796

\[ {}x y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(374\)

10797

\[ {}x y^{\prime \prime }-\left (3 x -2\right ) y^{\prime }-\left (2 x -3\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(375\)

10798

\[ {}x y^{\prime \prime }+\left (a x +b +n \right ) y^{\prime }+n a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(376\)

10799

\[ {}x y^{\prime \prime }-\left (a +b \right ) \left (x +1\right ) y^{\prime }+a b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(377\)

10800

\[ {}x y^{\prime \prime }+\left (\left (a +b \right ) x +m +n \right ) y^{\prime }+\left (a b x +a n +b m \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(378\)

10802

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(379\)

10806

\[ {}x y^{\prime \prime }-2 \left (x^{2}-a \right ) y^{\prime }+2 n x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(380\)

10813

\[ {}2 x y^{\prime \prime }-\left (x -1\right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(381\)

10814

\[ {}2 x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+a y = 0 \]

[_Laguerre]

\(382\)

10816

\[ {}4 x y^{\prime \prime }-\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(383\)

10819

\[ {}4 x y^{\prime \prime }+4 y-\left (x +2\right ) y+l y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(384\)

10820

\[ {}4 x y^{\prime \prime }+4 m y^{\prime }-\left (x -2 m -4 n \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(385\)

10821

\[ {}16 x y^{\prime \prime }+8 y^{\prime }-\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(386\)

10824

\[ {}5 \left (a x +b \right ) y^{\prime \prime }+8 a y^{\prime }+c \left (a x +b \right )^{{1}/{5}} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(387\)

10825

\[ {}2 a x y^{\prime \prime }+\left (b x +a \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(388\)

10826

\[ {}2 a x y^{\prime \prime }+\left (b x +3 a \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(389\)

10827

\[ {}\left (\operatorname {a2} x +\operatorname {b2} \right ) y^{\prime \prime }+\left (\operatorname {a1} x +\operatorname {b1} \right ) y^{\prime }+\left (\operatorname {a0} x +\operatorname {b0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(390\)

10836

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(391\)

10838

\[ {}x^{2} y^{\prime \prime }+\frac {y}{\ln \left (x \right )}-x \,{\mathrm e}^{x} \left (2+\ln \left (x \right ) x \right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(392\)

10853

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (l \,x^{2}+a x -n \left (n +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(393\)

10854

\[ {}x^{2} y^{\prime \prime }+2 \left (x -1\right ) y^{\prime }+a y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(394\)

10855

\[ {}x^{2} y^{\prime \prime }+2 \left (x +a \right ) y^{\prime }-b \left (b -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(395\)

10870

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(396\)

10872

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(397\)

10877

\[ {}x^{2} y^{\prime \prime }+\left (x +3\right ) x y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(398\)

10879

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(399\)

10882

\[ {}x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }-v \left (v -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(400\)

10888

\[ {}x^{2} y^{\prime \prime }+\left (2 a x +b \right ) x y^{\prime }+\left (a b x +c \,x^{2}+d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(401\)

10889

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(402\)

10892

\[ {}x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(403\)

10895

\[ {}x^{2} y^{\prime \prime }+\left (x^{3}+1\right ) x y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(404\)

10896

\[ {}x^{2} y^{\prime \prime }+\left (-x^{4}+\left (2 n +2 a +1\right ) x^{2}+\left (-1\right )^{n} a -a^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(405\)

10897

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\operatorname {a1} \,x^{2 n}+\operatorname {b1} \,x^{n}+\operatorname {c1} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(406\)

10899

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2} \tan \left (x \right )-x \right ) y^{\prime }-\left (x \tan \left (x \right )+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(407\)

10900

\[ {}x^{2} y^{\prime \prime }+\left (2 x^{2} \cot \left (x \right )+x \right ) y^{\prime }+\left (x \cot \left (x \right )+a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(408\)

10901

\[ {}x^{2} y^{\prime \prime }+2 x f \left (x \right ) y^{\prime }+\left (f^{\prime }\left (x \right ) x +f \left (x \right )^{2}-f \left (x \right )+a \,x^{2}+b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(409\)

10902

\[ {}x^{2} y^{\prime \prime }+2 x^{2} f \left (x \right ) y^{\prime }+\left (x^{2} \left (f^{\prime }\left (x \right )+f \left (x \right )^{2}+a \right )-v \left (v -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(410\)

10903

\[ {}x^{2} y^{\prime \prime }+\left (x -2 f \left (x \right ) x^{2}\right ) y^{\prime }+\left (x^{2} \left (1+f \left (x \right )^{2}-f^{\prime }\left (x \right )\right )-f \left (x \right ) x -v^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(411\)

10908

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-v \left (v -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(412\)

10913

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-v \left (v +1\right ) y = 0 \]

[_Gegenbauer]

\(413\)

10914

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-n \left (n +1\right ) y+\frac {d}{d x}\operatorname {LegendreP}\left (n , x\right ) = 0 \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(414\)

10920

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-l y = 0 \]

[_Gegenbauer]

\(415\)

10921

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-v \left (v +1\right ) y = 0 \]

[_Gegenbauer]

\(416\)

10922

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }-\left (v +2\right ) \left (v -1\right ) y = 0 \]

[_Gegenbauer]

\(417\)

10925

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 \left (n +1\right ) x y^{\prime }-\left (v +n +1\right ) \left (v -n \right ) y = 0 \]

[_Gegenbauer]

\(418\)

10926

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (v -n +1\right ) \left (v +n \right ) y = 0 \]

[_Gegenbauer]

\(419\)

10929

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+a x y^{\prime }+\left (b \,x^{2}+c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(420\)

10930

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(421\)

10933

\[ {}x \left (x +1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(422\)

10937

\[ {}x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-v \left (v +1\right ) y = 0 \]

[_Jacobi]

\(423\)

10939

\[ {}x \left (x -1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

[_Jacobi]

\(424\)

10940

\[ {}x \left (x -1\right ) y^{\prime \prime }+\left (\left (a +1\right ) x +b \right ) y^{\prime }-l y = 0 \]

[_Jacobi]

\(425\)

10942

\[ {}x \left (x +2\right ) y^{\prime \prime }+2 \left (n +1+\left (n +1-2 l \right ) x -l \,x^{2}\right ) y^{\prime }+\left (2 l \left (p -n -1\right ) x +2 p l +m \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(426\)

10946

\[ {}\left (x -1\right ) \left (-2+x \right ) y^{\prime \prime }-\left (2 x -3\right ) y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(427\)

10949

\[ {}2 x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y = 0 \]

[_Jacobi]

\(428\)

10950

\[ {}2 x \left (x -1\right ) y^{\prime \prime }+\left (\left (2 v +5\right ) x -2 v -3\right ) y^{\prime }+\left (v +1\right ) y = 0 \]

[_Jacobi]

\(429\)

10954

\[ {}4 x^{2} y^{\prime \prime }-\left (-4 k x +4 m^{2}+x^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(430\)

10956

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (-x^{2}+2 \left (1-m +2 l \right ) x -m^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(431\)

10966

\[ {}x \left (4 x -1\right ) y^{\prime \prime }+\left (\left (4 a +2\right ) x -a \right ) y^{\prime }+a \left (a -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(432\)

10972

\[ {}48 x \left (x -1\right ) y^{\prime \prime }+\left (152 x -40\right ) y^{\prime }+53 y = 0 \]

[_Jacobi]

\(433\)

10974

\[ {}144 x \left (x -1\right ) y^{\prime \prime }+\left (120 x -48\right ) y^{\prime }+y = 0 \]

[_Jacobi]

\(434\)

10975

\[ {}144 x \left (x -1\right ) y^{\prime \prime }+\left (168 x -96\right ) y^{\prime }+y = 0 \]

[_Jacobi]

\(435\)

10976

\[ {}a \,x^{2} y^{\prime \prime }+b x y^{\prime }+\left (c \,x^{2}+d x +f \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(436\)

10977

\[ {}\operatorname {a2} \,x^{2} y^{\prime \prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x \right ) y^{\prime }+\left (\operatorname {a0} \,x^{2}+\operatorname {b0} x +\operatorname {c0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(437\)

10982

\[ {}\operatorname {A2} \left (a x +b \right )^{2} y^{\prime \prime }+\operatorname {A1} \left (a x +b \right ) y^{\prime }+\operatorname {A0} \left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(438\)

10983

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (d x +f \right ) y^{\prime }+g y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(439\)

10985

\[ {}x^{3} y^{\prime \prime }+2 x y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(440\)

10986

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+\left (a \,x^{2}+b x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(441\)

10989

\[ {}x^{3} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(442\)

10991

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 x^{2}+1\right ) y^{\prime }-v \left (v +1\right ) x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(443\)

10993

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }+\left (2 \left (n +1\right ) x^{2}+2 n +1\right ) y^{\prime }-\left (v -n \right ) \left (v +n +1\right ) x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(444\)

10994

\[ {}x \left (x^{2}+1\right ) y^{\prime \prime }-\left (2 \left (n -1\right ) x^{2}+2 n -1\right ) y^{\prime }+\left (v +n \right ) \left (-v +n -1\right ) x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(445\)

10996

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }-x y = 0 \]

[[_elliptic, _class_II]]

\(446\)

10997

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+\left (3 x^{2}-1\right ) y^{\prime }+x y = 0 \]

[[_elliptic, _class_I]]

\(447\)

10998

\[ {}x \left (x^{2}-1\right ) y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(448\)

11005

\[ {}y^{\prime \prime } = -\frac {\left (\left (a +b +1\right ) x +\alpha +\beta -1\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (a b x -\alpha \beta \right ) y}{x^{2} \left (x -1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(449\)

11007

\[ {}y^{\prime \prime } = \frac {2 y^{\prime }}{x \left (-2+x \right )}-\frac {y}{x^{2} \left (-2+x \right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(450\)

11009

\[ {}y^{\prime \prime } = -\frac {\left (\left (\alpha +\beta +1\right ) x^{2}-\left (\alpha +\beta +1+a \left (\gamma +\delta \right )-\delta \right ) x +a \gamma \right ) y^{\prime }}{x \left (x -1\right ) \left (x -a \right )}-\frac {\left (\alpha \beta x -q \right ) y}{x \left (x -1\right ) \left (x -a \right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(451\)

11010

\[ {}y^{\prime \prime } = -\frac {\left (A \,x^{2}+B x +C \right ) y^{\prime }}{\left (x -a \right ) \left (x -b \right ) \left (x -c \right )}-\frac {\left (\operatorname {DD} x +E \right ) y}{\left (x -a \right ) \left (x -b \right ) \left (x -c \right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(452\)

11013

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}+\frac {v \left (v +1\right ) y}{4 x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(453\)

11014

\[ {}y^{\prime \prime } = -\frac {\left (\left (a +1\right ) x -1\right ) y^{\prime }}{x \left (x -1\right )}-\frac {\left (\left (a^{2}-b^{2}\right ) x +c^{2}\right ) y}{4 x^{2} \left (x -1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(454\)

11015

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (a x +b \right ) y}{4 x \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(455\)

11019

\[ {}y^{\prime \prime } = -\frac {\left (a \left (b +2\right ) x^{2}+\left (c -d +1\right ) x \right ) y^{\prime }}{\left (a x +1\right ) x^{2}}-\frac {\left (a b x -c d \right ) y}{\left (a x +1\right ) x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(456\)

11021

\[ {}y^{\prime \prime } = -\frac {\left (2 a x +b \right ) y^{\prime }}{x \left (a x +b \right )}-\frac {\left (a v x -b \right ) y}{\left (a x +b \right ) x^{2}}+A x \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(457\)

11023

\[ {}y^{\prime \prime } = -\frac {\left (x^{2} a \left (-a +1\right )-b \left (x +b \right )\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

\(458\)

11024

\[ {}y^{\prime \prime } = -\frac {\left ({\mathrm e}^{\frac {2}{x}}-v^{2}\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

\(459\)

11028

\[ {}y^{\prime \prime } = -\frac {y^{\prime }}{x}-\frac {\left (b \,x^{2}+a \left (x^{4}+1\right )\right ) y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

\(460\)

11029

\[ {}y^{\prime \prime } = -\frac {\left (x^{2}+1\right ) y^{\prime }}{x^{3}}-\frac {y}{x^{4}} \]

[[_2nd_order, _with_linear_symmetries]]

\(461\)

11036

\[ {}y^{\prime \prime } = -\frac {\left (2 x^{2}+1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (-v \left (v +1\right ) x^{2}-n^{2}\right ) y}{x^{2} \left (x^{2}+1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(462\)

11037

\[ {}y^{\prime \prime } = -\frac {\left (a \,x^{2}+a -1\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (b \,x^{2}+c \right ) y}{x^{2} \left (x^{2}+1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(463\)

11039

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}-\frac {v \left (v +1\right ) y}{x^{2} \left (x^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(464\)

11040

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}+\frac {v \left (v +1\right ) y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(465\)

11042

\[ {}x^{2} \left (x^{2}-1\right ) y^{\prime \prime }-2 x^{3} y^{\prime }-\left (\left (a -n \right ) \left (a +n +1\right ) x^{2} \left (x^{2}-1\right )+2 a \,x^{2}+n \left (n +1\right ) \left (x^{2}-1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(466\)

11043

\[ {}y^{\prime \prime } = -\frac {\left (a \,x^{2}+a -2\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {b y}{x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(467\)

11044

\[ {}y^{\prime \prime } = \frac {\left (2 b c \,x^{c} \left (x^{2}-1\right )+2 \left (a -1\right ) x^{2}-2 a \right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (b^{2} c^{2} x^{2 c} \left (x^{2}-1\right )+b c \,x^{c +2} \left (2 a -c -1\right )-b c \,x^{c} \left (2 a -c +1\right )+x^{2} \left (a \left (a -1\right )-v \left (v +1\right )\right )-a \left (a +1\right )\right ) y}{x^{2} \left (x^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(468\)

11047

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}+1}-\frac {\left (a^{2} \left (x^{2}+1\right )^{2}-n \left (n +1\right ) \left (x^{2}+1\right )+m^{2}\right ) y}{\left (x^{2}+1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(469\)

11048

\[ {}y^{\prime \prime } = -\frac {a x y^{\prime }}{x^{2}+1}-\frac {b y}{\left (x^{2}+1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(470\)

11051

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2}-\lambda \left (x^{2}-1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(471\)

11052

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (\left (x^{2}-1\right ) \left (a \,x^{2}+b x +c \right )-k^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(472\)

11053

\[ {}y^{\prime \prime } = -\frac {2 x y^{\prime }}{x^{2}-1}-\frac {\left (-a^{2} \left (x^{2}-1\right )^{2}-n \left (n +1\right ) \left (x^{2}-1\right )-m^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(473\)

11054

\[ {}y^{\prime \prime } = \frac {2 x \left (2 a -1\right ) y^{\prime }}{x^{2}-1}-\frac {\left (x^{2} \left (2 a \left (2 a -1\right )-v \left (v +1\right )\right )+2 a +v \left (v +1\right )\right ) y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(474\)

11055

\[ {}y^{\prime \prime } = -\frac {2 x \left (n +1-2 a \right ) y^{\prime }}{x^{2}-1}-\frac {\left (4 a \,x^{2} \left (a -n \right )-\left (x^{2}-1\right ) \left (2 a +\left (v -n \right ) \left (v +n +1\right )\right )\right ) y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(475\)

11064

\[ {}y^{\prime \prime } = -\frac {\left (-x^{2} \left (a^{2}-1\right )+2 \left (a +3\right ) b x -b^{2}\right ) y}{4 x^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(476\)

11068

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (v \left (v +1\right ) \left (x -1\right )-x \,a^{2}\right ) y}{4 x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(477\)

11069

\[ {}y^{\prime \prime } = -\frac {\left (3 x -1\right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {\left (-v \left (v +1\right ) \left (x -1\right )^{2}-4 n^{2} x \right ) y}{4 x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(478\)

11072

\[ {}y^{\prime \prime } = -\frac {b x y^{\prime }}{\left (x^{2}-1\right ) a}-\frac {\left (c \,x^{2}+d x +e \right ) y}{a \left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(479\)

11073

\[ {}y^{\prime \prime } = -\frac {\left (b \,x^{2}+c x +d \right ) y}{a \,x^{2} \left (x -1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(480\)

11078

\[ {}y^{\prime \prime } = -\frac {\left (3 x^{2}-1\right ) y^{\prime }}{\left (x^{2}-1\right ) x}-\frac {\left (x^{2}-1-\left (2 v +1\right )^{2}\right ) y}{\left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(481\)

11082

\[ {}y^{\prime \prime } = -\frac {\left (\left (1-4 a \right ) x^{2}-1\right ) y^{\prime }}{x \left (x^{2}-1\right )}-\frac {\left (\left (-v^{2}+x^{2}\right ) \left (x^{2}-1\right )^{2}+4 a \left (a +1\right ) x^{4}-2 a \,x^{2} \left (x^{2}-1\right )\right ) y}{x^{2} \left (x^{2}-1\right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(482\)

11083

\[ {}y^{\prime \prime } = -\left (\frac {1-\operatorname {a1} -\operatorname {b1}}{x -\operatorname {c1}}+\frac {1-\operatorname {a2} -\operatorname {b2}}{x -\operatorname {c2}}+\frac {1-\operatorname {a3} -\operatorname {b3}}{x -\operatorname {c3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {a1} \operatorname {b1} \left (\operatorname {c1} -\operatorname {c3} \right ) \left (\operatorname {c1} -\operatorname {c2} \right )}{x -\operatorname {c1}}+\frac {\operatorname {a2} \operatorname {b2} \left (\operatorname {c2} -\operatorname {c1} \right ) \left (\operatorname {c2} -\operatorname {c3} \right )}{x -\operatorname {c2}}+\frac {\operatorname {a3} \operatorname {b3} \left (\operatorname {c3} -\operatorname {c2} \right ) \left (\operatorname {c3} -\operatorname {c1} \right )}{x -\operatorname {c3}}\right ) y}{\left (x -\operatorname {c1} \right ) \left (x -\operatorname {c2} \right ) \left (x -\operatorname {c3} \right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(483\)

11087

\[ {}y^{\prime \prime } = -\left (\frac {\left (1-\operatorname {al1} -\operatorname {bl1} \right ) \operatorname {b1}}{\operatorname {b1} x -\operatorname {a1}}+\frac {\left (1-\operatorname {al2} -\operatorname {bl2} \right ) \operatorname {b2}}{\operatorname {b2} x -\operatorname {a2}}+\frac {\left (1-\operatorname {al3} -\operatorname {bl3} \right ) \operatorname {b3}}{\operatorname {b3} x -\operatorname {a3}}\right ) y^{\prime }-\frac {\left (\frac {\operatorname {al1} \operatorname {bl1} \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right ) \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right )}{\operatorname {b1} x -\operatorname {a1}}+\frac {\operatorname {al2} \operatorname {bl2} \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right ) \left (\operatorname {a1} \operatorname {b2} -\operatorname {a2} \operatorname {b1} \right )}{\operatorname {b2} x -\operatorname {a2}}+\frac {\operatorname {al3} \operatorname {bl3} \left (-\operatorname {a1} \operatorname {b3} +\operatorname {a3} \operatorname {b1} \right ) \left (\operatorname {a2} \operatorname {b3} -\operatorname {a3} \operatorname {b2} \right )}{\operatorname {b3} x -\operatorname {a3}}\right ) y}{\left (\operatorname {b1} x -\operatorname {a1} \right ) \left (\operatorname {b2} x -\operatorname {a2} \right ) \left (\operatorname {b3} x -\operatorname {a3} \right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(484\)

11090

\[ {}y^{\prime \prime } = -\frac {\left (a p \,x^{b}+q \right ) y^{\prime }}{x \left (a \,x^{b}-1\right )}-\frac {\left (a r \,x^{b}+s \right ) y}{x^{2} \left (a \,x^{b}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(485\)

11091

\[ {}y^{\prime \prime } = \frac {y}{1+{\mathrm e}^{x}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(486\)

11094

\[ {}y^{\prime \prime } = -\frac {\left (-a^{2} \sinh \left (x \right )^{2}-n \left (n -1\right )\right ) y}{\sinh \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(487\)

11095

\[ {}y^{\prime \prime } = -\frac {2 n \cosh \left (x \right ) y^{\prime }}{\sinh \left (x \right )}-\left (-a^{2}+n^{2}\right ) y \]

[[_2nd_order, _with_linear_symmetries]]

\(488\)

11096

\[ {}y^{\prime \prime } = -\frac {\left (2 n +1\right ) \cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\left (v +n +1\right ) \left (v -n \right ) y \]

[[_2nd_order, _with_linear_symmetries]]

\(489\)

11100

\[ {}\cos \left (x \right )^{2} y^{\prime \prime }-\left (a \cos \left (x \right )^{2}+n \left (n -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(490\)

11102

\[ {}y^{\prime \prime } = \frac {2 y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(491\)

11103

\[ {}y^{\prime \prime } = -\frac {a y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(492\)

11104

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-\left (a \sin \left (x \right )^{2}+n \left (n -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(493\)

11105

\[ {}y^{\prime \prime } = -\frac {\left (-a^{2} \cos \left (x \right )^{2}-\left (3-2 a \right ) \cos \left (x \right )-3+3 a \right ) y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(494\)

11106

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-\left (a^{2} \cos \left (x \right )^{2}+b \cos \left (x \right )+\frac {b^{2}}{\left (2 a -3\right )^{2}}+3 a +2\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(495\)

11107

\[ {}y^{\prime \prime } = -\frac {\left (-\left (a^{2} b^{2}-\left (a +1\right )^{2}\right ) \sin \left (x \right )^{2}-a \left (a +1\right ) b \sin \left (2 x \right )-a \left (a -1\right )\right ) y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(496\)

11108

\[ {}y^{\prime \prime } = -\frac {\left (a \cos \left (x \right )^{2}+b \sin \left (x \right )^{2}+c \right ) y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(497\)

11110

\[ {}y^{\prime \prime } = -\frac {\cos \left (x \right ) y^{\prime }}{\sin \left (x \right )}-\frac {\left (v \left (v +1\right ) \sin \left (x \right )^{2}-n^{2}\right ) y}{\sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(498\)

11111

\[ {}y^{\prime \prime } = \frac {\cos \left (2 x \right ) y^{\prime }}{\sin \left (2 x \right )}-2 y \]

[[_2nd_order, _with_linear_symmetries]]

\(499\)

11113

\[ {}y^{\prime \prime } = -\frac {\sin \left (x \right ) y^{\prime }}{\cos \left (x \right )}-\frac {\left (2 x^{2}+x^{2} \sin \left (x \right )^{2}-24 \cos \left (x \right )^{2}\right ) y}{4 x^{2} \cos \left (x \right )^{2}}+\sqrt {\cos \left (x \right )} \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(500\)

11114

\[ {}y^{\prime \prime } = -\frac {b \cos \left (x \right ) y^{\prime }}{\sin \left (x \right ) a}-\frac {\left (c \cos \left (x \right )^{2}+d \cos \left (x \right )+e \right ) y}{a \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(501\)

11115

\[ {}y^{\prime \prime } = -\frac {4 \sin \left (3 x \right ) y}{\sin \left (x \right )^{3}} \]

[[_2nd_order, _with_linear_symmetries]]

\(502\)

11116

\[ {}y^{\prime \prime } = -\frac {\left (4 v \left (v +1\right ) \sin \left (x \right )^{2}-\cos \left (x \right )^{2}+2-4 n^{2}\right ) y}{4 \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(503\)

11118

\[ {}y^{\prime \prime } = -\frac {\left (-a \cos \left (x \right )^{2} \sin \left (x \right )^{2}-m \left (m -1\right ) \sin \left (x \right )^{2}-n \left (n -1\right ) \cos \left (x \right )^{2}\right ) y}{\cos \left (x \right )^{2} \sin \left (x \right )^{2}} \]

[[_2nd_order, _with_linear_symmetries]]

\(504\)

11124

\[ {}y^{\prime \prime } = -\frac {\left (2 f \left (x \right ) {g^{\prime }\left (x \right )}^{2} g \left (x \right )-\left (g \left (x \right )^{2}-1\right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )\right ) y^{\prime }}{f \left (x \right ) g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )}-\frac {\left (\left (g \left (x \right )^{2}-1\right ) \left (f^{\prime }\left (x \right ) \left (f \left (x \right ) g^{\prime \prime }\left (x \right )+2 f^{\prime }\left (x \right ) g^{\prime }\left (x \right )\right )-f \left (x \right ) f^{\prime \prime }\left (x \right ) g^{\prime }\left (x \right )\right )-\left (2 f^{\prime }\left (x \right ) g \left (x \right )+v \left (v +1\right ) f \left (x \right ) g^{\prime }\left (x \right )\right ) f \left (x \right ) {g^{\prime }\left (x \right )}^{2}\right ) y}{f \left (x \right )^{2} g^{\prime }\left (x \right ) \left (g \left (x \right )^{2}-1\right )} \]

[[_2nd_order, _with_linear_symmetries]]

\(505\)

11129

\[ {}y^{\prime \prime \prime }+y a \,x^{3}-b x = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

\(506\)

11130

\[ {}y^{\prime \prime \prime }-a \,x^{b} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(507\)

11133

\[ {}y^{\prime \prime \prime }+2 a x y^{\prime }+a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(508\)

11134

\[ {}y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+\left (a +b -1\right ) x y^{\prime }-b y a = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(509\)

11135

\[ {}y^{\prime \prime \prime }+x^{2 c -2} y^{\prime }+\left (c -1\right ) x^{2 c -3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(510\)

11147

\[ {}y^{\prime \prime \prime }-6 x y^{\prime \prime }+2 \left (4 x^{2}+2 a -1\right ) y^{\prime }-8 a x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(511\)

11148

\[ {}y^{\prime \prime \prime }+3 a x y^{\prime \prime }+3 a^{2} x^{2} y^{\prime }+a^{3} x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(512\)

11149

\[ {}y^{\prime \prime \prime }-\sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y-\ln \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

\(513\)

11150

\[ {}y^{\prime \prime \prime }+f \left (x \right ) y^{\prime \prime }+y^{\prime }+f \left (x \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(514\)

11151

\[ {}y^{\prime \prime \prime }+f \left (x \right ) \left (x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y\right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(515\)

11156

\[ {}x y^{\prime \prime \prime }+3 y^{\prime \prime }+x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(516\)

11157

\[ {}x y^{\prime \prime \prime }+3 y^{\prime \prime }-a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(517\)

11158

\[ {}x y^{\prime \prime \prime }+\left (a +b \right ) y^{\prime \prime }-x y^{\prime }-a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(518\)

11159

\[ {}x y^{\prime \prime \prime }-\left (x +2 v \right ) y^{\prime \prime }-\left (x -2 v -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(519\)

11160

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y-f \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

\(520\)

11161

\[ {}2 x y^{\prime \prime \prime }+3 y^{\prime \prime }+a x y-b = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

\(521\)

11162

\[ {}2 x y^{\prime \prime \prime }-4 \left (x +\nu -1\right ) y^{\prime \prime }+\left (2 x +6 \nu -5\right ) y^{\prime }+\left (1-2 \nu \right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(522\)

11164

\[ {}\left (-2+x \right ) x y^{\prime \prime \prime }-\left (-2+x \right ) x y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

[[_3rd_order, _exact, _linear, _homogeneous]]

\(523\)

11165

\[ {}\left (2 x -1\right ) y^{\prime \prime \prime }-8 x y^{\prime }+8 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(524\)

11167

\[ {}y^{\prime \prime \prime } x^{2}-6 y^{\prime }+a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(525\)

11171

\[ {}y^{\prime \prime \prime } x^{2}-3 \left (x -m \right ) x y^{\prime \prime }+\left (2 x^{2}+4 \left (n -m \right ) x +m \left (2 m -1\right )\right ) y^{\prime }-2 n \left (2 x -2 m +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(526\)

11172

\[ {}y^{\prime \prime \prime } x^{2}+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 x y-f \left (x \right ) = 0 \]

[[_3rd_order, _linear, _nonhomogeneous]]

\(527\)

11175

\[ {}y^{\prime \prime \prime } x^{2}+6 x y^{\prime \prime }+6 y^{\prime }+a \,x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(528\)

11176

\[ {}y^{\prime \prime \prime } x^{2}-3 \left (p +q \right ) x y^{\prime \prime }+3 p \left (3 q +1\right ) y^{\prime }-x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(529\)

11177

\[ {}y^{\prime \prime \prime } x^{2}-2 \left (n +1\right ) x y^{\prime \prime }+\left (a \,x^{2}+6 n \right ) y^{\prime }-2 a x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(530\)

11178

\[ {}y^{\prime \prime \prime } x^{2}-\left (x^{2}-2 x \right ) y^{\prime \prime }-\left (x^{2}+\nu ^{2}-\frac {1}{4}\right ) y^{\prime }+\left (x^{2}-2 x +\nu ^{2}-\frac {1}{4}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(531\)

11179

\[ {}y^{\prime \prime \prime } x^{2}-\left (x +\nu \right ) x y^{\prime \prime }+\nu \left (2 x +1\right ) y^{\prime }-\nu \left (x +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(532\)

11180

\[ {}y^{\prime \prime \prime } x^{2}-2 \left (x^{2}-x \right ) y^{\prime \prime }+\left (x^{2}-2 x +\frac {1}{4}-\nu ^{2}\right ) y^{\prime }+\left (\nu ^{2}-\frac {1}{4}\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(533\)

11181

\[ {}y^{\prime \prime \prime } x^{2}-\left (x^{4}-6 x \right ) y^{\prime \prime }-\left (2 x^{3}-6\right ) y^{\prime }+2 x^{2} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(534\)

11183

\[ {}\left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }-2 x y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(535\)

11184

\[ {}2 x \left (x -1\right ) y^{\prime \prime \prime }+3 \left (2 x -1\right ) y^{\prime \prime }+\left (2 a x +b \right ) y^{\prime }+a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(536\)

11185

\[ {}x^{3} y^{\prime \prime \prime }+\left (-\nu ^{2}+1\right ) x y^{\prime }+\left (a \,x^{3}+\nu ^{2}-1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(537\)

11186

\[ {}x^{3} y^{\prime \prime \prime }+\left (4 x^{3}+\left (-4 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (4 \nu ^{2}-1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(538\)

11190

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+\left (x^{2}+8\right ) x y^{\prime }-2 \left (x^{2}+4\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(539\)

11193

\[ {}x^{3} y^{\prime \prime \prime }+\left (x +3\right ) x^{2} y^{\prime \prime }+5 \left (x -6\right ) x y^{\prime }+\left (4 x +30\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(540\)

11195

\[ {}\left (x^{2}+1\right ) x y^{\prime \prime \prime }+3 \left (2 x^{2}+1\right ) y^{\prime \prime }-12 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(541\)

11196

\[ {}\left (x +3\right ) x^{2} y^{\prime \prime \prime }-3 x \left (x +2\right ) y^{\prime \prime }+6 \left (x +1\right ) y^{\prime }-6 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(542\)

11197

\[ {}2 \left (x -\operatorname {a1} \right ) \left (x -\operatorname {a2} \right ) \left (x -\operatorname {a3} \right ) y^{\prime \prime \prime }+\left (9 x^{2}-6 \left (\operatorname {a1} +\operatorname {a2} +\operatorname {a3} \right ) x +3 \operatorname {a1} \operatorname {a2} +3 \operatorname {a1} \operatorname {a3} +3 \operatorname {a2} \operatorname {a3} \right ) y^{\prime \prime }-2 \left (\left (n^{2}+n -3\right ) x +b \right ) y^{\prime }-n \left (n +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(543\)

11198

\[ {}\left (x +1\right ) x^{3} y^{\prime \prime \prime }-\left (4 x +2\right ) x^{2} y^{\prime \prime }+\left (10 x +4\right ) x y^{\prime }-4 \left (3 x +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(544\)

11200

\[ {}\left (x^{2}+1\right ) x^{3} y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-4 \left (3 x^{2}+1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(545\)

11201

\[ {}x^{6} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(546\)

11202

\[ {}x^{6} y^{\prime \prime \prime }+6 x^{5} y^{\prime \prime }+a y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(547\)

11203

\[ {}x^{2} \left (x^{4}+2 x^{2}+2 x +1\right ) y^{\prime \prime \prime }-\left (2 x^{6}+3 x^{4}-6 x^{2}-6 x -1\right ) y^{\prime \prime }+\left (x^{6}-6 x^{3}-15 x^{2}-12 x -2\right ) y^{\prime }+\left (x^{4}+4 x^{3}+8 x^{2}+6 x +1\right ) y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(548\)

11204

\[ {}\left (x -a \right )^{3} \left (x -b \right )^{3} y^{\prime \prime \prime }-c y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(549\)

11206

\[ {}\left (\sin \left (x \right )+x \right ) y^{\prime \prime \prime }+3 \left (\cos \left (x \right )+1\right ) y^{\prime \prime }-3 \sin \left (x \right ) y^{\prime }-y \cos \left (x \right )+\sin \left (x \right ) = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

\(550\)

11207

\[ {}y^{\prime \prime \prime } \sin \left (x \right )^{2}+3 y^{\prime \prime } \sin \left (x \right ) \cos \left (x \right )+\left (\cos \left (2 x \right )+4 \nu \left (\nu +1\right ) \sin \left (x \right )^{2}\right ) y^{\prime }+2 \nu \left (\nu +1\right ) y \sin \left (2 x \right ) = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(551\)

11209

\[ {}y^{\prime \prime \prime }+x y^{\prime }+n y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(552\)

11210

\[ {}y^{\prime \prime \prime }-x y^{\prime }-n y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(553\)

11222

\[ {}y^{\prime \prime \prime \prime }+4 a x y^{\prime \prime \prime }+6 a^{2} x^{2} y^{\prime \prime }+4 a^{3} x^{3} y^{\prime }+a^{4} x^{4} y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(554\)

11225

\[ {}x y^{\prime \prime \prime \prime }-\left (6 x^{2}+1\right ) y^{\prime \prime \prime }+12 x^{3} y^{\prime \prime }-\left (9 x^{2}-7\right ) x^{2} y^{\prime }+2 \left (x^{2}-3\right ) x^{3} y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(555\)

11226

\[ {}x^{2} y^{\prime \prime \prime \prime }-2 \left (\nu ^{2} x^{2}+6\right ) y^{\prime \prime }+\nu ^{2} \left (\nu ^{2} x^{2}+4\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(556\)

11227

\[ {}x^{2} y^{\prime \prime \prime \prime }+2 x y^{\prime \prime \prime }+a y-b \,x^{2} = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

\(557\)

11230

\[ {}x^{2} y^{\prime \prime \prime \prime }+6 x y^{\prime \prime \prime }+6 y^{\prime \prime }-\lambda ^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(558\)

11232

\[ {}x^{2} y^{\prime \prime \prime \prime }+8 x y^{\prime \prime \prime }+12 y^{\prime \prime }-\lambda ^{2} y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(559\)

11233

\[ {}x^{2} y^{\prime \prime \prime \prime }+\left (2 n -2 \nu +4\right ) x y^{\prime \prime \prime }+\left (n -\nu +1\right ) \left (n -\nu +2\right ) y^{\prime \prime }-\frac {b^{4} y}{16} = 0 \]

[[_high_order, _with_linear_symmetries]]

\(560\)

11234

\[ {}x^{3} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime } x^{2}-x y^{\prime \prime }+y^{\prime }-a^{4} x^{3} y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(561\)

11236

\[ {}x^{4} y^{\prime \prime \prime \prime }-2 n \left (n +1\right ) x^{2} y^{\prime \prime }+4 n \left (n +1\right ) x y^{\prime }+\left (a \,x^{4}+n \left (n +1\right ) \left (3+n \right ) \left (n -2\right )\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(562\)

11237

\[ {}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }+\left (4 n^{2}-1\right ) x y^{\prime }-4 y x^{4} = 0 \]

[[_high_order, _with_linear_symmetries]]

\(563\)

11238

\[ {}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}-1\right ) x^{2} y^{\prime \prime }-\left (4 n^{2}-1\right ) x y^{\prime }+\left (-4 x^{4}+4 n^{2}-1\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(564\)

11239

\[ {}x^{4} y^{\prime \prime \prime \prime }+4 x^{3} y^{\prime \prime \prime }-\left (4 n^{2}+3\right ) x^{2} y^{\prime \prime }+\left (12 n^{2}-3\right ) x y^{\prime }-\left (4 x^{4}+12 n^{2}-3\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(565\)

11240

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-\rho ^{2}-\sigma ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-\rho ^{2}-\sigma ^{2}+1\right ) x \right ) y^{\prime }+\left (\rho ^{2} \sigma ^{2}+8 x^{2}\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(566\)

11241

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+\left (4 x^{4}+\left (-2 \mu ^{2}-2 \nu ^{2}+7\right ) x^{2}\right ) y^{\prime \prime }+\left (16 x^{3}+\left (-2 \mu ^{2}-2 \nu ^{2}+1\right ) x \right ) y^{\prime }+\left (8 x^{2}+\left (\mu ^{2}-\nu ^{2}\right )^{2}\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(567\)

11244

\[ {}x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a \right ) x^{3} y^{\prime \prime \prime }+\left (4 b^{2} c^{2} x^{2 c}+6 \left (a -1\right )^{2}-2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )+1\right ) x^{2} y^{\prime \prime }+\left (4 \left (3 c -2 a +1\right ) b^{2} c^{2} x^{2 c}+\left (2 a -1\right ) \left (2 c^{2} \left (\mu ^{2}+\nu ^{2}\right )-2 a \left (a -1\right )-1\right )\right ) x y^{\prime }+\left (4 \left (a -c \right ) \left (a -2 c \right ) b^{2} c^{2} x^{2 c}+\left (c \mu +c \nu +a \right ) \left (c \mu +c \nu -a \right ) \left (c \mu -c \nu +a \right ) \left (c \mu -c \nu -a \right )\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(568\)

11245

\[ {}x^{4} y^{\prime \prime \prime \prime }+\left (6-4 a -4 c \right ) x^{3} y^{\prime \prime \prime }+\left (-2 \nu ^{2} c^{2}+2 a^{2}+4 \left (a +c -1\right )^{2}+4 \left (a -1\right ) \left (c -1\right )-1\right ) x^{2} y^{\prime \prime }+\left (2 \nu ^{2} c^{2}-2 a^{2}-\left (2 a -1\right ) \left (2 c -1\right )\right ) \left (2 a +2 c -1\right ) x y^{\prime }+\left (\left (-\nu ^{2} c^{2}+a^{2}\right ) \left (-\nu ^{2} c^{2}+a^{2}+4 a c +4 c^{2}\right )-b^{4} c^{4} x^{4 c}\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(569\)

11246

\[ {}\nu ^{4} x^{4} y^{\prime \prime \prime \prime }+\left (4 \nu -2\right ) \nu ^{3} x^{3} y^{\prime \prime \prime }+\left (\nu -1\right ) \left (2 \nu -1\right ) \nu ^{2} x^{2} y^{\prime \prime }-\frac {b^{4} x^{\frac {2}{\nu }} y}{16} = 0 \]

[[_high_order, _with_linear_symmetries]]

\(570\)

11247

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime \prime \prime }+10 x \left (x^{2}-1\right ) y^{\prime \prime \prime }+\left (24 x^{2}-8-2 \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )\right ) \left (x^{2}-1\right )\right ) y^{\prime \prime }-6 x \left (\mu \left (\mu +1\right )+\nu \left (\nu +1\right )-2\right ) y^{\prime }+\left (\left (\mu \left (\mu +1\right )-\nu \left (\nu +1\right )\right )^{2}-2 \mu \left (\mu +1\right )-2 \nu \left (\nu +1\right )\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(571\)

11248

\[ {}\left ({\mathrm e}^{x}+2 x \right ) y^{\prime \prime \prime \prime }+4 \left ({\mathrm e}^{x}+2\right ) y^{\prime \prime \prime }+6 \,{\mathrm e}^{x} y^{\prime \prime }+4 \,{\mathrm e}^{x} y^{\prime }+y \,{\mathrm e}^{x}-\frac {1}{x^{5}} = 0 \]

[[_high_order, _fully, _exact, _linear]]

\(572\)

11249

\[ {}y^{\prime \prime \prime \prime } \sin \left (x \right )^{4}+2 y^{\prime \prime \prime } \sin \left (x \right )^{3} \cos \left (x \right )+y^{\prime \prime } \sin \left (x \right )^{2} \left (\sin \left (x \right )^{2}-3\right )+y^{\prime } \sin \left (x \right ) \cos \left (x \right ) \left (2 \sin \left (x \right )^{2}+3\right )+\left (a^{4} \sin \left (x \right )^{4}-3\right ) y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(573\)

11250

\[ {}y^{\prime \prime \prime \prime } \sin \left (x \right )^{6}+4 y^{\prime \prime \prime } \sin \left (x \right )^{5} \cos \left (x \right )-6 y^{\prime \prime } \sin \left (x \right )^{6}-4 y^{\prime } \sin \left (x \right )^{5} \cos \left (x \right )+y \sin \left (x \right )^{6}-f = 0 \]

[[_high_order, _linear, _nonhomogeneous]]

\(574\)

11253

\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y-\lambda \left (a x -b \right ) \left (y^{\prime \prime }-a^{2} y\right ) = 0 \]

[[_high_order, _with_linear_symmetries]]

\(575\)

11259

\[ {}x y^{\left (5\right )}-m n y^{\prime \prime \prime \prime }+a x y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(576\)

11262

\[ {}x^{2} y^{\prime \prime \prime \prime }-a y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(577\)

11263

\[ {}x^{10} y^{\left (5\right )}-a y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(578\)

11264

\[ {}x^{{5}/{2}} y^{\left (5\right )}-a y = 0 \]

[[_high_order, _with_linear_symmetries]]

\(579\)

11278

\[ {}y^{\prime \prime }-\frac {1}{\left (a y^{2}+b x y+c \,x^{2}+\alpha y+\beta x +\gamma \right )^{{3}/{2}}} = 0 \]

[NONE]

\(580\)

11285

\[ {}y^{\prime \prime } = \frac {f \left (\frac {y}{\sqrt {x}}\right )}{x^{{3}/{2}}} \]

[[_2nd_order, _with_linear_symmetries]]

\(581\)

11288

\[ {}y^{\prime \prime }+5 a y^{\prime }-6 y^{2}+6 a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

\(582\)

11289

\[ {}y^{\prime \prime }+3 a y^{\prime }-2 y^{3}+2 a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

\(583\)

11296

\[ {}y^{\prime \prime }+y^{\prime } y-y^{3}+a y = 0 \]

[[_2nd_order, _missing_x]]

\(584\)

11297

\[ {}y^{\prime \prime }+\left (y+3 a \right ) y^{\prime }-y^{3}+a y^{2}+2 a^{2} y = 0 \]

[[_2nd_order, _missing_x]]

\(585\)

11304

\[ {}y^{\prime \prime }+\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+y^{2} f \left (x \right ) = 0 \]

[[_2nd_order, _with_potential_symmetries]]

\(586\)

11305

\[ {}y^{\prime \prime }-3 y^{\prime } y-3 a y^{2}-4 a^{2} y-b = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(587\)

11306

\[ {}y^{\prime \prime }-\left (3 y+f \left (x \right )\right ) y^{\prime }+y^{3}+y^{2} f \left (x \right ) = 0 \]

[[_2nd_order, _with_potential_symmetries]]

\(588\)

11322

\[ {}y^{\prime \prime }-a \left (-y+x y^{\prime }\right )^{v} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(589\)

11331

\[ {}y^{\prime \prime } = 2 a \left (c +b x +y\right ) \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\(590\)

11344

\[ {}x y^{\prime \prime }-x^{2} {y^{\prime }}^{2}+2 y^{\prime }+y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(591\)

11345

\[ {}x y^{\prime \prime }+a \left (-y+x y^{\prime }\right )^{2}-b = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(592\)

11351

\[ {}x^{2} y^{\prime \prime }+a \left (-y+x y^{\prime }\right )^{2}-b \,x^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(593\)

11353

\[ {}x^{2} y^{\prime \prime }-\sqrt {a \,x^{2} {y^{\prime }}^{2}+b y^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(594\)

11356

\[ {}9 x^{2} y^{\prime \prime }+a y^{3}+2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(595\)

11358

\[ {}x^{3} y^{\prime \prime }-a \left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(596\)

11362

\[ {}x^{4} y^{\prime \prime }-x \left (x^{2}+2 y\right ) y^{\prime }+4 y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(597\)

11363

\[ {}x^{4} y^{\prime \prime }-x^{2} \left (x +y^{\prime }\right ) y^{\prime }+4 y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(598\)

11364

\[ {}x^{4} y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(599\)

11366

\[ {}\left (a \,x^{2}+b x +c \right )^{{3}/{2}} y^{\prime \prime }-F \left (\frac {y}{\sqrt {a \,x^{2}+b x +c}}\right ) = 0 \]

[NONE]

\(600\)

11386

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+\left (\tan \left (x \right )+\cot \left (x \right )\right ) y y^{\prime }+\left (\cos \left (x \right )^{2}-n^{2} \cot \left (x \right )^{2}\right ) y^{2} \ln \left (y\right ) = 0 \]

[[_2nd_order, _reducible, _mu_xy]]

\(601\)

11387

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}-f \left (x \right ) y y^{\prime }-g \left (x \right ) y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(602\)

11393

\[ {}y y^{\prime \prime }+a {y^{\prime }}^{2}+b y y^{\prime }+c y^{2}+d y^{-a +1} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

\(603\)

11399

\[ {}y^{\prime \prime } \left (x -y\right )+2 y^{\prime } \left (y^{\prime }+1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\(604\)

11400

\[ {}y^{\prime \prime } \left (x -y\right )-\left (y^{\prime }+1\right ) \left ({y^{\prime }}^{2}+1\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\(605\)

11401

\[ {}y^{\prime \prime } \left (x -y\right )-h \left (y^{\prime }\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\(606\)

11421

\[ {}3 y y^{\prime \prime }-2 {y^{\prime }}^{2}-a \,x^{2}-b x -c = 0 \]

[NONE]

\(607\)

11435

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}+a y y^{\prime }+f \left (x \right ) = 0 \]

[[_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_xy]]

\(608\)

11439

\[ {}x y y^{\prime \prime }-2 x {y^{\prime }}^{2}+\left (y+1\right ) y^{\prime } = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(609\)

11442

\[ {}x y y^{\prime \prime }+\left (\frac {a x}{\sqrt {b^{2}-x^{2}}}-x \right ) {y^{\prime }}^{2}-y^{\prime } y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(610\)

11445

\[ {}x^{2} \left (y-1\right ) y^{\prime \prime }-2 x^{2} {y^{\prime }}^{2}-2 x \left (y-1\right ) y^{\prime }-2 y \left (y-1\right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(611\)

11446

\[ {}x^{2} \left (x +y\right ) y^{\prime \prime }-\left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(612\)

11447

\[ {}x^{2} \left (x -y\right ) y^{\prime \prime }+a \left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(613\)

11448

\[ {}2 x^{2} y y^{\prime \prime }-x^{2} \left ({y^{\prime }}^{2}+1\right )+y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(614\)

11449

\[ {}a \,x^{2} y y^{\prime \prime }+b \,x^{2} {y^{\prime }}^{2}+c x y y^{\prime }+d y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(615\)

11450

\[ {}x \left (x +1\right )^{2} y y^{\prime \prime }-x \left (x +1\right )^{2} {y^{\prime }}^{2}+2 \left (x +1\right )^{2} y y^{\prime }-a \left (x +2\right ) y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(616\)

11451

\[ {}8 \left (-x^{3}+1\right ) y y^{\prime \prime }-4 \left (-x^{3}+1\right ) {y^{\prime }}^{2}-12 x^{2} y y^{\prime }+3 x y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(617\)

11454

\[ {}y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}+a x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(618\)

11455

\[ {}y^{2} y^{\prime \prime }+y {y^{\prime }}^{2}-a x -b = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(619\)

11458

\[ {}\left (x +y^{2}\right ) y^{\prime \prime }-2 \left (x -y^{2}\right ) {y^{\prime }}^{3}+y^{\prime } \left (1+4 y^{\prime } y\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1]]

\(620\)

11459

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime \prime }-\left ({y^{\prime }}^{2}+1\right ) \left (-y+x y^{\prime }\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\(621\)

11460

\[ {}\left (y^{2}+x^{2}\right ) y^{\prime \prime }-2 \left ({y^{\prime }}^{2}+1\right ) \left (-y+x y^{\prime }\right ) = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\(622\)

11461

\[ {}2 y \left (1-y\right ) y^{\prime \prime }-\left (1-2 y\right ) {y^{\prime }}^{2}+y \left (1-y\right ) y^{\prime } f \left (x \right ) = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(623\)

11470

\[ {}x y^{2} y^{\prime \prime }-a = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

\(624\)

11471

\[ {}\left (a^{2}-x^{2}\right ) \left (a^{2}-y^{2}\right ) y^{\prime \prime }+\left (a^{2}-x^{2}\right ) y {y^{\prime }}^{2}-x \left (a^{2}-y^{2}\right ) y^{\prime } = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(625\)

11473

\[ {}x^{3} y^{2} y^{\prime \prime }+\left (x +y\right ) \left (-y+x y^{\prime }\right )^{3} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(626\)

11484

\[ {}\left (c +2 b x +a \,x^{2}+y^{2}\right )^{2} y^{\prime \prime }+d y = 0 \]

[NONE]

\(627\)

11486

\[ {}\sqrt {y^{2}+x^{2}}\, y^{\prime \prime }-a \left ({y^{\prime }}^{2}+1\right )^{{3}/{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(628\)

11492

\[ {}\left (-y+x y^{\prime }\right ) y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(629\)

11493

\[ {}\left (-y+x y^{\prime }\right ) y^{\prime \prime }-\left ({y^{\prime }}^{2}+1\right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(630\)

11494

\[ {}a \,x^{3} y^{\prime } y^{\prime \prime }+b y^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(631\)

11498

\[ {}\left ({y^{\prime }}^{2}+a \left (-y+x y^{\prime }\right )\right ) y^{\prime \prime }-b = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(632\)

11499

\[ {}\left (a \sqrt {{y^{\prime }}^{2}+1}-x y^{\prime }\right ) y^{\prime \prime }-{y^{\prime }}^{2}-1 = 0 \]

[[_2nd_order, _missing_y]]

\(633\)

11501

\[ {}{y^{\prime \prime }}^{2}-a y-b = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\(634\)

11502

\[ {}a^{2} {y^{\prime \prime }}^{2}-2 a x y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_y]]

\(635\)

11503

\[ {}2 \left (x^{2}+1\right ) {y^{\prime \prime }}^{2}-x y^{\prime \prime } \left (x +4 y^{\prime }\right )+2 \left (x +y^{\prime }\right ) y^{\prime }-2 y = 0 \]

[NONE]

\(636\)

11504

\[ {}3 x^{2} {y^{\prime \prime }}^{2}-2 \left (3 x y^{\prime }+y\right ) y^{\prime \prime }+4 {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(637\)

11505

\[ {}x^{2} \left (2-9 x \right ) {y^{\prime \prime }}^{2}-6 x \left (1-6 x \right ) y^{\prime } y^{\prime \prime }+6 y y^{\prime \prime }-36 x {y^{\prime }}^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(638\)

11517

\[ {}y^{\prime \prime \prime } x^{2}+x \left (y-1\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime } = 0 \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

\(639\)

11518

\[ {}y y^{\prime \prime \prime }-y^{\prime } y^{\prime \prime }+y^{3} y^{\prime } = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

\(640\)

11519

\[ {}4 y^{2} y^{\prime \prime \prime }-18 y y^{\prime } y^{\prime \prime }+15 {y^{\prime }}^{3} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

\(641\)

11520

\[ {}9 y^{2} y^{\prime \prime \prime }-45 y y^{\prime } y^{\prime \prime }+40 {y^{\prime }}^{3} = 0 \]

[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]

\(642\)

11528

\[ {}9 {y^{\prime \prime }}^{2} y^{\left (5\right )}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+40 y^{\prime \prime \prime } = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

\(643\)

11549

\[ {}\left [\begin {array}{c} x^{\prime }=x f \left (t \right )+y g \left (t \right ) \\ y^{\prime }=-x g \left (t \right )+y f \left (t \right ) \end {array}\right ] \]

system_of_ODEs

\(644\)

11550

\[ {}\left [\begin {array}{c} x^{\prime }+\left (a x+b y\right ) f \left (t \right )=g \left (t \right ) \\ y^{\prime }+\left (c x+d y\right ) f \left (t \right )=h \left (t \right ) \end {array}\right ] \]

system_of_ODEs

\(645\)

11551

\[ {}\left [\begin {array}{c} x^{\prime }=x \cos \left (t \right ) \\ y^{\prime }=x \,{\mathrm e}^{-\sin \left (t \right )} \end {array}\right ] \]

system_of_ODEs

\(646\)

11552

\[ {}\left [\begin {array}{c} t x^{\prime }+y=0 \\ t y^{\prime }+x=0 \end {array}\right ] \]

system_of_ODEs

\(647\)

11553

\[ {}\left [\begin {array}{c} t x^{\prime }+2 x=t \\ t y^{\prime }-\left (t +2\right ) x-t y=-t \end {array}\right ] \]

system_of_ODEs

\(648\)

11554

\[ {}\left [\begin {array}{c} t x^{\prime }+2 x-2 y=t \\ t y^{\prime }+x+5 y=t^{2} \end {array}\right ] \]

system_of_ODEs

\(649\)

11555

\[ {}\left [\begin {array}{c} t^{2} \left (1-\sin \left (t \right )\right ) x^{\prime }=t \left (1-2 \sin \left (t \right )\right ) x+t^{2} y \\ t^{2} \left (1-\sin \left (t \right )\right ) y^{\prime }=\left (t \cos \left (t \right )-\sin \left (t \right )\right ) x+t \left (1-t \cos \left (t \right )\right ) y \end {array}\right ] \]

system_of_ODEs

\(650\)

11556

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }+y=f \left (t \right ) \\ x^{\prime \prime }+y^{\prime \prime }+y^{\prime }+x+y=g \left (t \right ) \end {array}\right ] \]

system_of_ODEs

\(651\)

11557

\[ {}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-3 x=0 \\ x^{\prime \prime }+y^{\prime }-2 y={\mathrm e}^{2 t} \end {array}\right ] \]

system_of_ODEs

\(652\)

11558

\[ {}\left [\begin {array}{c} x^{\prime }+x-y^{\prime }=2 t \\ x^{\prime \prime }+y^{\prime }-9 x+3 y=\sin \left (2 t \right ) \end {array}\right ] \]

system_of_ODEs

\(653\)

11559

\[ {}\left [\begin {array}{c} x^{\prime }-x+2 y=0 \\ x^{\prime \prime }-2 y^{\prime }=2 t -\cos \left (2 t \right ) \end {array}\right ] \]

system_of_ODEs

\(654\)

11560

\[ {}\left [\begin {array}{c} t x^{\prime }-t y^{\prime }-2 y=0 \\ t x^{\prime \prime }+2 x^{\prime }+x t =0 \end {array}\right ] \]

system_of_ODEs

\(655\)

11561

\[ {}\left [\begin {array}{c} x^{\prime \prime }+a y=0 \\ y^{\prime \prime }-a^{2} y=0 \end {array}\right ] \]

system_of_ODEs

\(656\)

11562

\[ {}\left [\begin {array}{c} x^{\prime \prime }=a x+b y \\ y^{\prime \prime }=c x+d y \end {array}\right ] \]

system_of_ODEs

\(657\)

11563

\[ {}\left [\begin {array}{c} x^{\prime \prime }=a_{1} x+b_{1} y+c_{1} \\ y^{\prime \prime }=a_{2} x+b_{2} y+c_{2} \end {array}\right ] \]

system_of_ODEs

\(658\)

11564

\[ {}\left [\begin {array}{c} x^{\prime \prime }+x+y=-5 \\ y^{\prime \prime }-4 x-3 y=-3 \end {array}\right ] \]

system_of_ODEs

\(659\)

11566

\[ {}\left [\begin {array}{c} x^{\prime \prime }+6 x+7 y=0 \\ y^{\prime \prime }+3 x+2 y=2 t \end {array}\right ] \]

system_of_ODEs

\(660\)

11567

\[ {}\left [\begin {array}{c} x^{\prime \prime }-a y^{\prime }+b x=0 \\ y^{\prime \prime }+a x^{\prime }+b y=0 \end {array}\right ] \]

system_of_ODEs

\(661\)

11568

\[ {}\left [\begin {array}{c} a_{1} x^{\prime \prime }+b_{1} x^{\prime }+c_{1} x-A y^{\prime }=B \,{\mathrm e}^{i \omega t} \\ a_{2} y^{\prime \prime }+b_{2} y^{\prime }+c_{2} y+A x^{\prime }=0 \end {array}\right ] \]

system_of_ODEs

\(662\)

11569

\[ {}\left [\begin {array}{c} x^{\prime \prime }+a \left (x^{\prime }-y^{\prime }\right )+b_{1} x=c_{1} {\mathrm e}^{i \omega t} \\ y^{\prime \prime }+a \left (y^{\prime }-x^{\prime }\right )+b_{2} y=c_{2} {\mathrm e}^{i \omega t} \end {array}\right ] \]

system_of_ODEs

\(663\)

11570

\[ {}\left [\begin {array}{c} \operatorname {a11} x^{\prime \prime }+\operatorname {b11} x^{\prime }+\operatorname {c11} x+\operatorname {a12} y^{\prime \prime }+\operatorname {b12} y^{\prime }+\operatorname {c12} y=0 \\ \operatorname {a21} x^{\prime \prime }+\operatorname {b21} x^{\prime }+\operatorname {c21} x+\operatorname {a22} y^{\prime \prime }+\operatorname {b22} y^{\prime }+\operatorname {c22} y=0 \end {array}\right ] \]

system_of_ODEs

\(664\)

11571

\[ {}\left [\begin {array}{c} x^{\prime \prime }-2 x^{\prime }-y^{\prime }+y=0 \\ y^{\prime \prime \prime }-y^{\prime \prime }+2 x^{\prime }-x=t \end {array}\right ] \]

system_of_ODEs

\(665\)

11572

\[ {}\left [\begin {array}{c} x^{\prime \prime }+y^{\prime \prime }+y^{\prime }=\sinh \left (2 t \right ) \\ 2 x^{\prime \prime }+y^{\prime \prime }=2 t \end {array}\right ] \]

system_of_ODEs

\(666\)

11573

\[ {}\left [\begin {array}{c} x^{\prime \prime }-x^{\prime }+y^{\prime }=0 \\ x^{\prime \prime }+y^{\prime \prime }-x=0 \end {array}\right ] \]

system_of_ODEs

\(667\)

11585

\[ {}\left [\begin {array}{c} t x^{\prime }=2 x-t \\ t^{3} y^{\prime }=-x+t^{2} y+t \\ t^{4} z^{\prime }=-x-t^{2} y+t^{3} z+t \end {array}\right ] \]

system_of_ODEs

\(668\)

11586

\[ {}\left [\begin {array}{c} a t x^{\prime }=b c \left (y-z\right ) \\ b t y^{\prime }=c a \left (z-x\right ) \\ c t z^{\prime }=a b \left (x-y\right ) \end {array}\right ] \]

system_of_ODEs

\(669\)

11587

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=a x_{2}+b x_{3} \cos \left (c t \right )+b x_{4} \sin \left (c t \right ) \\ x_{2}^{\prime }=-a x_{1}+b x_{3} \sin \left (c t \right )-b x_{4} \cos \left (c t \right ) \\ x_{3}^{\prime }=-b x_{1} \cos \left (c t \right )-b x_{2} \sin \left (c t \right )+a x_{4} \\ x_{4}^{\prime }=-b x_{1} \sin \left (c t \right )+b x_{2} \cos \left (c t \right )-a x_{3} \end {array}\right ] \]

system_of_ODEs

\(670\)

11588

\[ {}\left [\begin {array}{c} x^{\prime }=-x \left (x+y\right ) \\ y^{\prime }=y \left (x+y\right ) \end {array}\right ] \]

system_of_ODEs

\(671\)

11589

\[ {}\left [\begin {array}{c} x^{\prime }=\left (a y+b \right ) x \\ y^{\prime }=\left (c x+d \right ) y \end {array}\right ] \]

system_of_ODEs

\(672\)

11591

\[ {}\left [\begin {array}{c} x^{\prime }=h \left (a -x\right ) \left (c -x-y\right ) \\ y^{\prime }=k \left (b -y\right ) \left (c -x-y\right ) \end {array}\right ] \]

system_of_ODEs

\(673\)

11592

\[ {}\left [\begin {array}{c} x^{\prime }=y^{2}-\cos \left (x\right ) \\ y^{\prime }=-y \sin \left (x\right ) \end {array}\right ] \]

system_of_ODEs

\(674\)

11598

\[ {}\left [\begin {array}{c} \left (t^{2}+1\right ) x^{\prime }=-x t +y \\ \left (t^{2}+1\right ) y^{\prime }=-x-t y \end {array}\right ] \]

system_of_ODEs

\(675\)

11599

\[ {}\left [\begin {array}{c} \left (x^{2}+y^{2}-t^{2}\right ) x^{\prime }=-2 x t \\ \left (x^{2}+y^{2}-t^{2}\right ) y^{\prime }=-2 t y \end {array}\right ] \]

system_of_ODEs

\(676\)

11600

\[ {}\left [\begin {array}{c} {x^{\prime }}^{2}+t x^{\prime }+a y^{\prime }-x=0 \\ x^{\prime } y^{\prime }+t y^{\prime }-y=0 \end {array}\right ] \]

system_of_ODEs

\(677\)

11601

\[ {}\left [\begin {array}{c} x=t x^{\prime }+f \left (x^{\prime }, y^{\prime }\right ) \\ y=t y^{\prime }+g \left (x^{\prime }, y^{\prime }\right ) \end {array}\right ] \]

system_of_ODEs

\(678\)

11604

\[ {}\left [\begin {array}{c} x^{\prime }=y-z \\ y^{\prime }=x^{2}+y \\ z^{\prime }=x^{2}+z \end {array}\right ] \]

system_of_ODEs

\(679\)

11605

\[ {}\left [\begin {array}{c} a x^{\prime }=\left (b -c \right ) y z \\ b y^{\prime }=\left (c -a \right ) z x \\ c z^{\prime }=\left (a -b \right ) x y \end {array}\right ] \]

system_of_ODEs

\(680\)

11607

\[ {}\left [\begin {array}{c} x^{\prime }+y^{\prime }=x y \\ y^{\prime }+z^{\prime }=y z \\ x^{\prime }+z^{\prime }=x z \end {array}\right ] \]

system_of_ODEs

\(681\)

11610

\[ {}\left [\begin {array}{c} x^{\prime }=x \left (y^{2}-z^{2}\right ) \\ y^{\prime }=-y \left (z^{2}+x^{2}\right ) \\ z^{\prime }=z \left (x^{2}+y^{2}\right ) \end {array}\right ] \]

system_of_ODEs

\(682\)

11612

\[ {}\left [\begin {array}{c} \left (x-y\right ) \left (x-z\right ) x^{\prime }=f \left (t \right ) \\ \left (y-x\right ) \left (y-z\right ) y^{\prime }=f \left (t \right ) \\ \left (z-x\right ) \left (z-y\right ) z^{\prime }=f \left (t \right ) \end {array}\right ] \]

system_of_ODEs

\(683\)

11687

\[ {}y^{\prime } = y^{2}+a n \,x^{n -1}-a^{2} x^{2 n} \]

[_Riccati]

\(684\)

11692

\[ {}y^{\prime } = a \,x^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{n +2 m} \]

[_Riccati]

\(685\)

11710

\[ {}y^{\prime } = y^{2}+a \,x^{n} y-a b \,x^{n}-b^{2} \]

[_Riccati]

\(686\)

11712

\[ {}y^{\prime } = a \,x^{n} y^{2}+b \,x^{m} y+b c \,x^{m}-a \,c^{2} x^{n} \]

[_Riccati]

\(687\)

11736

\[ {}x^{2} y^{\prime } = \left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y^{2}+\left (a \,x^{n}+b \right ) x y+c \,x^{2} \]

[_rational, _Riccati]

\(688\)

11737

\[ {}\left (x^{2}-1\right ) y^{\prime }+\lambda \left (1-2 x y+y^{2}\right ) = 0 \]

[_rational, _Riccati]

\(689\)

11742

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime } = y^{2}+\left (a x +\mu \right ) y-\lambda ^{2} x^{2}+\lambda \left (b -\mu \right ) x +\lambda c \]

[_rational, _Riccati]

\(690\)

11757

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = c y^{2}-b \,x^{m -1} y+a \,x^{n -2} \]

[_rational, _Riccati]

\(691\)

11759

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime } = \alpha \,x^{k} y^{2}+\beta \,x^{s} y-\alpha \,\lambda ^{2} x^{k}+\beta \lambda \,x^{s} \]

[_rational, _Riccati]

\(692\)

11775

\[ {}y^{\prime } = a \,{\mathrm e}^{\mu x} y^{2}+a b \,{\mathrm e}^{\left (\lambda +\mu \right ) x} y-b \lambda \,{\mathrm e}^{\lambda x} \]

[_Riccati]

\(693\)

11780

\[ {}\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+c \right ) y^{\prime } = y^{2}+k \,{\mathrm e}^{\nu x} y-m^{2}+k m \,{\mathrm e}^{\nu x} \]

[_Riccati]

\(694\)

11785

\[ {}y^{\prime } = {\mathrm e}^{\lambda x} y^{2}+a \,x^{n} y+a \lambda \,x^{n} {\mathrm e}^{-\lambda x} \]

[_Riccati]

\(695\)

11796

\[ {}x y^{\prime } = a \,x^{2 n} {\mathrm e}^{\lambda x} y^{2}+\left (b \,x^{n} {\mathrm e}^{\lambda x}-n \right ) y+c \,{\mathrm e}^{\lambda x} \]

[_Riccati]

\(696\)

11806

\[ {}\left (a \sinh \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \sinh \left (\mu x \right ) y-d^{2}+c d \sinh \left (\mu x \right ) \]

[_Riccati]

\(697\)

11816

\[ {}\left (a \cosh \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \cosh \left (\mu x \right ) y-d^{2}+c d \cosh \left (\mu x \right ) \]

[_Riccati]

\(698\)

11821

\[ {}\left (a \tanh \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \tanh \left (\mu x \right ) y-d^{2}+c d \tanh \left (\mu x \right ) \]

[_Riccati]

\(699\)

11825

\[ {}\left (a \coth \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \coth \left (\mu x \right ) y-d^{2}+c d \coth \left (\mu x \right ) \]

[_Riccati]

\(700\)

11843

\[ {}y^{\prime } = a \ln \left (x \right )^{n} y^{2}+b \ln \left (x \right )^{m} y+b c \ln \left (x \right )^{m}-a \,c^{2} \ln \left (x \right )^{n} \]

[_Riccati]

\(701\)

11849

\[ {}\left (a \ln \left (x \right )+b \right ) y^{\prime } = y^{2}+c \ln \left (x \right )^{n} y-\lambda ^{2}+\lambda c \ln \left (x \right )^{n} \]

[_Riccati]

\(702\)

11850

\[ {}\left (a \ln \left (x \right )+b \right ) y^{\prime } = \ln \left (x \right )^{n} y^{2}+c y-\lambda ^{2} \ln \left (x \right )^{n}+\lambda c \]

[_Riccati]

\(703\)

11862

\[ {}\left (a \sin \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \sin \left (\mu x \right ) y-d^{2}+c d \sin \left (\mu x \right ) \]

[_Riccati]

\(704\)

11875

\[ {}\left (a \cos \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \cos \left (\mu x \right ) y-d^{2}+c d \cos \left (\mu x \right ) \]

[_Riccati]

\(705\)

11887

\[ {}\left (a \tan \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+k \tan \left (\mu x \right ) y-d^{2}+k d \tan \left (\mu x \right ) \]

[_Riccati]

\(706\)

11894

\[ {}y^{\prime } = a \cot \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

\(707\)

11896

\[ {}\left (a \cot \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \cot \left (\mu x \right ) y-d^{2}+c d \cot \left (\mu x \right ) \]

[_Riccati]

\(708\)

11902

\[ {}\sin \left (2 x \right )^{n +1} y^{\prime } = a y^{2} \sin \left (x \right )^{2 n}+b \cos \left (x \right )^{2 n} \]

[_Riccati]

\(709\)

11913

\[ {}y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arcsin \left (x \right )^{n} \]

[_Riccati]

\(710\)

11916

\[ {}y^{\prime } = \lambda \arcsin \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

\(711\)

11919

\[ {}y^{\prime } = y^{2}+\lambda \arccos \left (x \right )^{n} y-a^{2}+a \lambda \arccos \left (x \right )^{n} \]

[_Riccati]

\(712\)

11922

\[ {}y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arccos \left (x \right )^{n} \]

[_Riccati]

\(713\)

11925

\[ {}y^{\prime } = \lambda \arccos \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

\(714\)

11931

\[ {}y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arctan \left (x \right )^{n} \]

[_Riccati]

\(715\)

11934

\[ {}y^{\prime } = \lambda \arctan \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

\(716\)

11940

\[ {}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \operatorname {arccot}\left (x \right )^{n} \]

[_Riccati]

\(717\)

11943

\[ {}y^{\prime } = \lambda \operatorname {arccot}\left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

\(718\)

11953

\[ {}x y^{\prime } = x^{2 n} f \left (x \right ) y^{2}+\left (a \,x^{n} f \left (x \right )-n \right ) y+b f \left (x \right ) \]

[_Riccati]

\(719\)

11971

\[ {}x y^{\prime } = f \left (x \right ) \left (y+a \ln \left (x \right )\right )^{2}-a \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], _Riccati]

\(720\)

11983

\[ {}y^{\prime } = \frac {f^{\prime }\left (x \right ) y^{2}}{g \left (x \right )}-\frac {g^{\prime }\left (x \right )}{f \left (x \right )} \]

[_Riccati]

\(721\)

12004

\[ {}y^{\prime } y-y = -\frac {2 x}{9}+A +\frac {B}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(722\)

12005

\[ {}y^{\prime } y-y = 2 A \left (\sqrt {x}+4 A +\frac {3 A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(723\)

12006

\[ {}y^{\prime } y-y = A x +\frac {B}{x}-\frac {B^{2}}{x^{3}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(724\)

12008

\[ {}y^{\prime } y-y = \frac {A}{x}-\frac {A^{2}}{x^{3}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(725\)

12009

\[ {}y^{\prime } y-y = A +B \,{\mathrm e}^{-\frac {2 x}{A}} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

\(726\)

12010

\[ {}y^{\prime } y-y = A \left ({\mathrm e}^{\frac {2 x}{A}}-1\right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

\(727\)

12012

\[ {}y^{\prime } y-y = -\frac {2 x}{9}+6 A^{2} \left (1+\frac {2 A}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(728\)

12014

\[ {}y^{\prime } y-y = \frac {\left (2 m +1\right ) x}{4 m^{2}}+\frac {A}{x}-\frac {A^{2}}{x^{3}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(729\)

12015

\[ {}y^{\prime } y-y = \frac {4}{9} x +2 A \,x^{2}+2 A^{2} x^{3} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(730\)

12017

\[ {}y^{\prime } y-y = \frac {A}{x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(731\)

12018

\[ {}y^{\prime } y-y = -\frac {x}{4}+\frac {A \left (\sqrt {x}+5 A +\frac {3 A^{2}}{\sqrt {x}}\right )}{4} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(732\)

12019

\[ {}y^{\prime } y-y = \frac {2 a^{2}}{\sqrt {8 a^{2}+x^{2}}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

\(733\)

12020

\[ {}y^{\prime } y-y = 2 x +\frac {A}{x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(734\)

12023

\[ {}y^{\prime } y-y = -\frac {4 x}{25}+\frac {A}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(735\)

12024

\[ {}y^{\prime } y-y = -\frac {9 x}{100}+\frac {A}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(736\)

12025

\[ {}y^{\prime } y-y = -\frac {12 x}{49}+\frac {2 A \left (5 \sqrt {x}+34 A +\frac {15 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(737\)

12026

\[ {}y^{\prime } y-y = -\frac {12 x}{49}+\frac {A \left (25 \sqrt {x}+41 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{98} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(738\)

12027

\[ {}y^{\prime } y-y = -\frac {2 x}{9}+\frac {A}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(739\)

12033

\[ {}y^{\prime } y-y = \frac {A}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(740\)

12034

\[ {}y^{\prime } y-y = \frac {A}{x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(741\)

12035

\[ {}y^{\prime } y-y = A \left (2+n \right ) \left (\sqrt {x}+2 \left (2+n \right ) A +\frac {\left (n +1\right ) \left (3+n \right ) A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(742\)

12036

\[ {}y^{\prime } y-y = A \left (2+n \right ) \left (\sqrt {x}+2 \left (2+n \right ) A +\frac {\left (2 n +3\right ) A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(743\)

12037

\[ {}y^{\prime } y-y = A \sqrt {x}+2 A^{2}+\frac {B}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(744\)

12038

\[ {}y^{\prime } y-y = 2 A^{2}-A \sqrt {x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(745\)

12041

\[ {}y^{\prime } y-y = -\frac {3 x}{16}+\frac {3 A}{x^{{1}/{3}}}-\frac {12 A^{2}}{x^{{5}/{3}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(746\)

12045

\[ {}y^{\prime } y-y = A \,x^{2}-\frac {9}{625 A} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(747\)

12046

\[ {}y^{\prime } y-y = -\frac {6}{25} x -A \,x^{2} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(748\)

12047

\[ {}y^{\prime } y-y = \frac {6}{25} x -A \,x^{2} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(749\)

12048

\[ {}y^{\prime } y-y = 12 x +\frac {A}{x^{{5}/{2}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(750\)

12050

\[ {}y^{\prime } y-y = 2 x +2 A \left (10 \sqrt {x}+31 A +\frac {30 A^{2}}{\sqrt {x}}\right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(751\)

12053

\[ {}y^{\prime } y-y = -\frac {12 x}{49}+\frac {A \left (5 \sqrt {x}+262 A +\frac {65 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(752\)

12054

\[ {}y^{\prime } y-y = -\frac {12 x}{49}+A \sqrt {x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(753\)

12055

\[ {}y^{\prime } y-y = 6 x +\frac {A}{x^{4}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(754\)

12058

\[ {}y^{\prime } y-y = -\frac {10 x}{49}+\frac {2 A \left (4 \sqrt {x}+61 A +\frac {12 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(755\)

12059

\[ {}y^{\prime } y-y = -\frac {12 x}{49}+\frac {2 A \left (\sqrt {x}+166 A +\frac {55 A^{2}}{\sqrt {x}}\right )}{49} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(756\)

12066

\[ {}y^{\prime } y-y = -\frac {6 x}{25}+\frac {4 B^{2} \left (\left (2-A \right ) x^{{1}/{3}}-\frac {3 B \left (2 A +1\right )}{2}+\frac {B^{2} \left (1-3 A \right )}{x^{{1}/{3}}}-\frac {A \,B^{3}}{x^{{2}/{3}}}\right )}{75} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(757\)

12078

\[ {}y^{\prime } y = \left (a x +b \right ) y+1 \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(758\)

12079

\[ {}y^{\prime } y = \frac {y}{\left (a x +b \right )^{2}}+1 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(759\)

12080

\[ {}y^{\prime } y = \left (a -\frac {1}{a x}\right ) y+1 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(760\)

12082

\[ {}y^{\prime } y = \frac {3 y}{\sqrt {a \,x^{{3}/{2}}+8 x}}+1 \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

\(761\)

12083

\[ {}y^{\prime } y = \left (\frac {a}{x^{{2}/{3}}}-\frac {2}{3 a \,x^{{1}/{3}}}\right ) y+1 \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(762\)

12084

\[ {}y^{\prime } y = a \,{\mathrm e}^{\lambda x} y+1 \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

\(763\)

12090

\[ {}y^{\prime } y = \left (a x +3 b \right ) y+c \,x^{3}-a b \,x^{2}-2 b^{2} x \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(764\)

12092

\[ {}2 y^{\prime } y = \left (7 a x +5 b \right ) y-3 a^{2} x^{3}-2 c \,x^{2}-3 b^{2} x \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(765\)

12094

\[ {}y^{\prime } y+x \left (a \,x^{2}+b \right ) y+x = 0 \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(766\)

12095

\[ {}y^{\prime } y+a \left (1-\frac {1}{x}\right ) y = a^{2} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(767\)

12096

\[ {}y^{\prime } y-a \left (1-\frac {b}{x}\right ) y = a^{2} b \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(768\)

12097

\[ {}y^{\prime } y = x^{n -1} \left (\left (2 n +1\right ) x +a n \right ) y-n \,x^{2 n} \left (x +a \right ) \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(769\)

12098

\[ {}y^{\prime } y = a \left (-b n +x \right ) x^{n -1} y+c \left (x^{2}-\left (2 n +1\right ) b x +n \left (n +1\right ) b^{2}\right ) x^{2 n -1} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(770\)

12104

\[ {}y^{\prime } y-\frac {a \left (\left (m -1\right ) x +1\right ) y}{x} = \frac {a^{2} \left (m x +1\right ) \left (x -1\right )}{x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(771\)

12105

\[ {}y^{\prime } y-a \left (1-\frac {b}{\sqrt {x}}\right ) y = \frac {a^{2} b}{\sqrt {x}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(772\)

12106

\[ {}y^{\prime } y = \frac {3 y}{\left (a x +b \right )^{{1}/{3}} x^{{5}/{3}}}+\frac {3}{\left (a x +b \right )^{{2}/{3}} x^{{7}/{3}}} \]

[[_Abel, ‘2nd type‘, ‘class B‘]]

\(773\)

12108

\[ {}y^{\prime } y+\frac {a \left (6 x -1\right ) y}{2 x} = -\frac {a^{2} \left (x -1\right ) \left (4 x -1\right )}{2 x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(774\)

12117

\[ {}y^{\prime } y+\frac {a \left (7 x -12\right ) y}{10 x^{{7}/{5}}} = -\frac {a^{2} \left (x -1\right ) \left (x -16\right )}{10 x^{{9}/{5}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(775\)

12120

\[ {}y^{\prime } y-\frac {a \left (x +1\right ) y}{2 x^{{7}/{4}}} = \frac {a^{2} \left (x -1\right ) \left (3 x +5\right )}{4 x^{{5}/{2}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(776\)

12125

\[ {}y^{\prime } y-\frac {a \left (5 x -4\right ) y}{x^{4}} = \frac {a^{2} \left (x -1\right ) \left (3 x -1\right )}{x^{7}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(777\)

12128

\[ {}y^{\prime } y+\frac {a \left (-2+x \right ) y}{x} = \frac {2 a^{2} \left (x -1\right )}{x} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(778\)

12132

\[ {}y^{\prime } y+\frac {a \left (33 x +2\right ) y}{30 x^{{6}/{5}}} = -\frac {a^{2} \left (x -1\right ) \left (9 x -4\right )}{30 x^{{7}/{5}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(779\)

12140

\[ {}y^{\prime } y-\frac {a \left (4+x \right ) y}{5 x^{{8}/{5}}} = \frac {a^{2} \left (x -1\right ) \left (3 x +7\right )}{5 x^{{11}/{5}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(780\)

12141

\[ {}y^{\prime } y-\frac {a \left (2 x -1\right ) y}{x^{{5}/{2}}} = \frac {a^{2} \left (x -1\right ) \left (3 x +1\right )}{2 x^{4}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(781\)

12142

\[ {}y^{\prime } y+\frac {a \left (x -6\right ) y}{5 x^{{7}/{5}}} = \frac {2 a^{2} \left (x -1\right ) \left (4+x \right )}{5 x^{{9}/{5}}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(782\)

12145

\[ {}y^{\prime } y-\frac {a \left (\left (k +1\right ) x -1\right ) y}{x^{2}} = \frac {a^{2} \left (k +1\right ) \left (x -1\right )}{x^{2}} \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(783\)

12148

\[ {}y^{\prime } y-\left (\left (2 n -1\right ) x -a n \right ) x^{-1-n} y = n \left (x -a \right ) x^{-2 n} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(784\)

12155

\[ {}y^{\prime } y-a \left (\frac {2+n}{n}+b \,x^{n}\right ) y = -\frac {a^{2} x \left (\frac {n +1}{n}+b \,x^{n}\right )}{n} \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(785\)

12156

\[ {}y^{\prime } y = \left (a \,{\mathrm e}^{x}+b \right ) y+c \,{\mathrm e}^{2 x}-a b \,{\mathrm e}^{x}-b^{2} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

\(786\)

12158

\[ {}y^{\prime } y = \left (a \,{\mathrm e}^{\lambda x}+b \right ) y+c \left (a^{2} {\mathrm e}^{2 \lambda x}+a b \left (\lambda x +1\right ) {\mathrm e}^{\lambda x}+b^{2} \lambda x \right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

\(787\)

12159

\[ {}y^{\prime } y = {\mathrm e}^{\lambda x} \left (2 a \lambda x +a +b \right ) y-{\mathrm e}^{2 \lambda x} \left (a^{2} \lambda \,x^{2}+a b x +c \right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

\(788\)

12161

\[ {}y^{\prime } y+a \left (2 b x +1\right ) {\mathrm e}^{b x} y = -a^{2} b \,x^{2} {\mathrm e}^{2 b x} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

\(789\)

12162

\[ {}y^{\prime } y-a \left (1+2 n +2 n \left (n +1\right ) x \right ) {\mathrm e}^{\left (n +1\right ) x} y = -a^{2} n \left (n +1\right ) \left (n x +1\right ) x \,{\mathrm e}^{2 \left (n +1\right ) x} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

\(790\)

12163

\[ {}y^{\prime } y+a \left (1+2 b \sqrt {x}\right ) {\mathrm e}^{2 b \sqrt {x}} y = -a^{2} b \,x^{{3}/{2}} {\mathrm e}^{4 b \sqrt {x}} \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

\(791\)

12166

\[ {}y^{\prime } y = \left (2 \ln \left (x \right )+a +1\right ) y+x \left (-\ln \left (x \right )^{2}-a \ln \left (x \right )+b \right ) \]

[[_Abel, ‘2nd type‘, ‘class A‘]]

\(792\)

12176

\[ {}x y y^{\prime } = -n y^{2}+a \left (2 n +1\right ) x y+b y-a^{2} n \,x^{2}-a b x +c \]

[_rational, [_Abel, ‘2nd type‘, ‘class B‘]]

\(793\)

12180

\[ {}y^{\prime \prime }-\left (a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(794\)

12182

\[ {}y^{\prime \prime }-\left (a \,x^{2}+b x c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(795\)

12184

\[ {}y^{\prime \prime }-a \left (a \,x^{2 n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(796\)

12185

\[ {}y^{\prime \prime }-a \,x^{n -2} \left (a \,x^{n}+n +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(797\)

12186

\[ {}y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(798\)

12189

\[ {}y^{\prime \prime }+a y^{\prime }-\left (b \,x^{2}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(799\)

12192

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}+a \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(800\)

12193

\[ {}y^{\prime \prime }+a y^{\prime }+b \left (-b \,x^{2 n}-a \,x^{n}+n \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(801\)

12194

\[ {}y^{\prime \prime }+x y^{\prime }+\left (n -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(802\)

12195

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 n y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(803\)

12196

\[ {}y^{\prime \prime }+a x y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(804\)

12197

\[ {}y^{\prime \prime }+a x y^{\prime }+b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(805\)

12198

\[ {}y^{\prime \prime }+a x y^{\prime }+\left (b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(806\)

12199

\[ {}y^{\prime \prime }+2 a x y^{\prime }+\left (b \,x^{4}+a^{2} x^{2}+c x +a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(807\)

12204

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(808\)

12205

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(809\)

12207

\[ {}y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(810\)

12213

\[ {}y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (\alpha \,x^{2}+\beta x +\gamma \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(811\)

12221

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }+b \,x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(812\)

12223

\[ {}y^{\prime \prime }+a \,x^{n} y^{\prime }+\left (b \,x^{2 n}+c \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(813\)

12225

\[ {}y^{\prime \prime }+2 a \,x^{n} y^{\prime }+\left (a^{2} x^{2 n}+b \,x^{2 m}+a n \,x^{n -1}+c \,x^{m -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(814\)

12227

\[ {}y^{\prime \prime }+\left (a \,x^{n}+2 b \right ) y^{\prime }+\left (a b \,x^{n}-a \,x^{n -1}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(815\)

12230

\[ {}y^{\prime \prime }+x^{n} \left (a \,x^{2}+\left (a c +b \right ) x +b c \right ) y^{\prime }-x^{n} \left (a x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(816\)

12240

\[ {}x y^{\prime \prime }+a y^{\prime }+\left (b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(817\)

12242

\[ {}x y^{\prime \prime }+\left (1-3 n \right ) y^{\prime }-a^{2} n^{2} x^{2 n -1} y = 0 \]

[[_Emden, _Fowler]]

\(818\)

12244

\[ {}x y^{\prime \prime }+a y^{\prime }+b \,x^{n} \left (-b \,x^{n +1}+a +n \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(819\)

12246

\[ {}x y^{\prime \prime }+\left (b -x \right ) y^{\prime }-a y = 0 \]

[_Laguerre]

\(820\)

12247

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c \left (\left (a -c \right ) x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(821\)

12249

\[ {}x y^{\prime \prime }+\left (\left (a +b \right ) x +m +n \right ) y^{\prime }+\left (a b x +a n +b m \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(822\)

12250

\[ {}x y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(823\)

12254

\[ {}x y^{\prime \prime }-\left (2 a x +1\right ) y^{\prime }+b \,x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(824\)

12255

\[ {}x y^{\prime \prime }+\left (a b \,x^{2}+b -5\right ) y^{\prime }+2 a^{2} \left (b -2\right ) x^{3} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(825\)

12260

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{2}+B x +\operatorname {C0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(826\)

12261

\[ {}x y^{\prime \prime }+\left (a \,x^{2}+b x +2\right ) y^{\prime }+\left (c \,x^{2}+d x +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(827\)

12269

\[ {}x y^{\prime \prime }+\left (x^{n}+1-n \right ) y^{\prime }+b \,x^{2 n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(828\)

12275

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime }+\left (c \,x^{2 n -1}+d \,x^{n -1}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(829\)

12276

\[ {}x y^{\prime \prime }+\left (a \,x^{n}+b \,x^{n -1}+2\right ) y^{\prime }+b \,x^{n -2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(830\)

12282

\[ {}\left (a_{1} x +a_{0} \right ) y^{\prime \prime }+\left (b_{1} x +b_{0} \right ) y^{\prime }-m b_{1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(831\)

12283

\[ {}\left (a x +b \right ) y^{\prime \prime }+s \left (c x +d \right ) y^{\prime }-s^{2} \left (\left (a +c \right ) x +b +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(832\)

12284

\[ {}\left (a_{2} x +b_{2} \right ) y^{\prime \prime }+\left (a_{1} x +b_{1} \right ) y^{\prime }+\left (a_{0} x +b_{0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(833\)

12290

\[ {}x^{2} y^{\prime \prime }-\left (a^{2} x^{2}+2 a b x +b^{2}-b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(834\)

12291

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(835\)

12293

\[ {}x^{2} y^{\prime \prime }-\left (a^{2} x^{4}+a \left (2 b -1\right ) x^{2}+b \left (b +1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(836\)

12295

\[ {}x^{2} y^{\prime \prime }-\left (a^{2} x^{2 n}+a \left (2 b +n -1\right ) x^{n}+b \left (b -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(837\)

12296

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2 n}+b \,x^{n}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(838\)

12297

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{3 n}+b \,x^{2 n}+\frac {1}{4}-\frac {n^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(839\)

12307

\[ {}x^{2} y^{\prime \prime }+\lambda x y^{\prime }+\left (a \,x^{2}+b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(840\)

12309

\[ {}x^{2} y^{\prime \prime }+a x y^{\prime }+x^{n} \left (b \,x^{n}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(841\)

12310

\[ {}x^{2} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(842\)

12311

\[ {}x^{2} y^{\prime \prime }+a \,x^{2} y^{\prime }+\left (b \,x^{2}+c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(843\)

12312

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c \left (\left (a -c \right ) x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(844\)

12314

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (k \left (a -k \right ) x^{2}+\left (a n +b k -2 k n \right ) x +n \left (-n +b -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(845\)

12315

\[ {}a_{2} x^{2} y^{\prime \prime }+\left (a_{1} x^{2}+b_{1} x \right ) y^{\prime }+\left (a_{0} x^{2}+b_{0} x +c_{0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(846\)

12317

\[ {}x^{2} y^{\prime \prime }-2 x \left (x^{2}-a \right ) y^{\prime }+\left (2 n \,x^{2}+\left (\left (-1\right )^{n}-1\right ) a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(847\)

12318

\[ {}x^{2} y^{\prime \prime }+x \left (a \,x^{2}+b x +c \right ) y^{\prime }+\left (A \,x^{3}+B \,x^{2}+C x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(848\)

12322

\[ {}x^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) y^{\prime } x +\left (\alpha \,x^{2 n}+\beta \,x^{n}+\gamma \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(849\)

12323

\[ {}x^{2} y^{\prime \prime }+x \left (2 a \,x^{n}+b \right ) y^{\prime }+\left (a^{2} x^{2 n}+a \left (n +b -1\right ) x^{n}+\alpha \,x^{2 m}+\beta \,x^{m}+\gamma \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(850\)

12325

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+n \left (n -1\right ) y = 0 \]

[_Gegenbauer]

\(851\)

12326

\[ {}\left (-a^{2}+x^{2}\right ) y^{\prime \prime }+b y^{\prime }-6 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(852\)

12329

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

\(853\)

12330

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\nu \left (\nu +1\right ) y = 0 \]

[_Gegenbauer]

\(854\)

12332

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+2 \left (n +1\right ) x y^{\prime }-\left (\nu +n +1\right ) \left (\nu -n \right ) y = 0 \]

[_Gegenbauer]

\(855\)

12333

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 \left (n -1\right ) x y^{\prime }-\left (\nu -n +1\right ) \left (\nu +n \right ) y = 0 \]

[_Gegenbauer]

\(856\)

12334

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (2 a +1\right ) y^{\prime }-b \left (2 a +b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(857\)

12335

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (2 a -3\right ) x y^{\prime }+\left (n +1\right ) \left (n +2 a -1\right ) y = 0 \]

[_Gegenbauer]

\(858\)

12336

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (\beta -\alpha -\left (\alpha +\beta +2\right ) x \right ) y^{\prime }+n \left (n +\alpha +\beta +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(859\)

12337

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (\alpha -\beta +\left (\alpha +\beta -2\right ) x \right ) y^{\prime }+\left (n +1\right ) \left (n +\alpha +\beta \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(860\)

12342

\[ {}\left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (2 n +1\right ) a x y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(861\)

12343

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\left (2 a \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(862\)

12344

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(863\)

12345

\[ {}\left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (c \,x^{2}+d \right ) y^{\prime }+\lambda \left (\left (-a \lambda +c \right ) x^{2}+d -b \lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(864\)

12346

\[ {}\left (a \,x^{2}+b \right ) y^{\prime \prime }+\left (\lambda \left (a +c \right ) x^{2}+\left (c -a \right ) x +2 b \lambda \right ) y^{\prime }+\lambda ^{2} \left (c \,x^{2}+b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(865\)

12347

\[ {}x \left (x -1\right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x -\gamma \right ) y^{\prime }+\alpha \beta y = 0 \]

[_Jacobi]

\(866\)

12348

\[ {}x \left (x +a \right ) y^{\prime \prime }+\left (b x +c \right ) y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(867\)

12349

\[ {}2 x \left (x -1\right ) y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }+\left (a x +b \right ) y = 0 \]

[_Jacobi]

\(868\)

12355

\[ {}\left (a_{2} x^{2}+b_{2} x +c_{2} \right ) y^{\prime \prime }+\left (b_{1} x +c_{1} \right ) y^{\prime }+c_{0} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(869\)

12356

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }-\left (-k^{2}+x^{2}\right ) y^{\prime }+\left (x +k \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(870\)

12357

\[ {}\left (a \,x^{2}+b x +c \right ) y^{\prime \prime }+\left (k^{3}+x^{3}\right ) y^{\prime }-\left (k^{2}-k x +x^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(871\)

12359

\[ {}x^{3} y^{\prime \prime }+\left (a \,x^{2}+b \right ) y^{\prime }+c x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(872\)

12360

\[ {}x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(873\)

12361

\[ {}x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(874\)

12362

\[ {}x^{3} y^{\prime \prime }+\left (a \,x^{2}+b x \right ) y^{\prime }+\left (c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(875\)

12363

\[ {}x^{3} y^{\prime \prime }+\left (a \,x^{3}+a b x -x^{2}+b \right ) y^{\prime }+a^{2} b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(876\)

12366

\[ {}x \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) y^{\prime }+s x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(877\)

12367

\[ {}x^{2} \left (a x +b \right ) y^{\prime \prime }+\left (c \,x^{2}+\left (a \lambda +2 b \right ) x +b \lambda \right ) y^{\prime }+\lambda \left (c -2 a \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(878\)

12370

\[ {}x^{2} \left (x +a_{2} \right ) y^{\prime \prime }+x \left (b_{1} x +a_{1} \right ) y^{\prime }+\left (b_{0} x +a_{0} \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(879\)

12371

\[ {}\left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +2 c \right ) y^{\prime }+\left (\beta -2 b \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(880\)

12372

\[ {}\left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (\alpha \,x^{2}+\beta x +2 c \right ) y^{\prime }-\left (\alpha x +2 b -\beta \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(881\)

12373

\[ {}\left (a \,x^{3}+b \,x^{2}+c x \right ) y^{\prime \prime }+\left (-2 a \,x^{2}-\left (b +1\right ) x +k \right ) y^{\prime }+2 \left (a x +1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(882\)

12377

\[ {}\left (a \,x^{3}+x^{2}+b \right ) y^{\prime \prime }+a^{2} x \left (x^{2}-b \right ) y^{\prime }-a^{3} b x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(883\)

12380

\[ {}x \left (x -1\right ) \left (x -a \right ) y^{\prime \prime }+\left (\left (\alpha +\beta +1\right ) x^{2}-\left (\alpha +\beta +1+a \left (\gamma +d \right )-a \right ) x +a \gamma \right ) y^{\prime }+\left (\alpha \beta x -q \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(884\)

12381

\[ {}\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }-\left (-\lambda ^{2}+x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(885\)

12383

\[ {}2 \left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+3 \left (3 a \,x^{2}+2 b x +c \right ) y^{\prime }+\left (6 a x +2 b +\lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(886\)

12385

\[ {}\left (a \,x^{3}+b \,x^{2}+c x +d \right ) y^{\prime \prime }+\left (\lambda ^{3}+x^{3}\right ) y^{\prime }-\left (\lambda ^{2}-\lambda x +x^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(887\)

12388

\[ {}x^{4} y^{\prime \prime }+\left (a \,x^{2}+b x +c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(888\)

12394

\[ {}a \,x^{2} \left (x -1\right )^{2} y^{\prime \prime }+\left (b \,x^{2}+c x +d \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(889\)

12395

\[ {}x^{2} \left (x^{2}+a \right ) y^{\prime \prime }+\left (b \,x^{2}+c \right ) x y^{\prime }+d y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(890\)

12402

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }-\left (\nu \left (\nu +1\right ) \left (x^{2}-1\right )+n^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(891\)

12403

\[ {}\left (-x^{2}+1\right )^{2} y^{\prime \prime }-2 x \left (-x^{2}+1\right ) y^{\prime }+\left (\nu \left (\nu +1\right ) \left (-x^{2}+1\right )-\mu ^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(892\)

12404

\[ {}a \left (x^{2}-1\right )^{2} y^{\prime \prime }+b x \left (x^{2}-1\right ) y^{\prime }+\left (c \,x^{2}+d x +e \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(893\)

12412

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}-1\right ) y^{\prime }+\left (\left (x^{2}-1\right ) \left (a^{2} x^{2}-\lambda \right )-m^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(894\)

12413

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+\left (\left (x^{2}+1\right ) \left (a^{2} x^{2}-\lambda \right )+m^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(895\)

12420

\[ {}x^{n} y^{\prime \prime }+\left (a \,x^{n -1}+b x \right ) y^{\prime }+\left (a -1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(896\)

12421

\[ {}x^{n} y^{\prime \prime }+\left (2 x^{n -1}+a \,x^{2}+b x \right ) y^{\prime }+b y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(897\)

12427

\[ {}x \left (x^{n}+1\right ) y^{\prime \prime }+\left (\left (a -b \right ) x^{n}+a -n \right ) y^{\prime }+b \left (-a +1\right ) x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(898\)

12429

\[ {}x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a^{2} \left (n +1\right ) x^{2 n}+n -1\right ) y^{\prime }-\nu \left (\nu +1\right ) a^{2} n^{2} x^{2 n} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(899\)

12430

\[ {}x^{2} \left (a^{2} x^{2 n}-1\right ) y^{\prime \prime }+x \left (a p \,x^{n}+q \right ) y^{\prime }+\left (a r \,x^{n}+s \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(900\)

12431

\[ {}\left (x^{n}+a \right )^{2} y^{\prime \prime }-b \,x^{n -2} \left (\left (b -1\right ) x^{n}+a \left (n -1\right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(901\)

12432

\[ {}\left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (a \,x^{n}+b \right ) \left (c \,x^{n}+d \right ) y^{\prime }+n \left (-a d +b c \right ) x^{n -1} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(902\)

12435

\[ {}x^{2} \left (a \,x^{n}+b \right )^{2} y^{\prime \prime }+\left (n +1\right ) x \left (a^{2} x^{2 n}-b^{2}\right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(903\)

12438

\[ {}\left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime \prime }+\left (\lambda ^{2}-x^{2}\right ) y^{\prime }+\left (x +\lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(904\)

12443

\[ {}y^{\prime \prime }+a \left (\lambda \,{\mathrm e}^{\lambda x}-a \,{\mathrm e}^{2 \lambda x}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(905\)

12444

\[ {}y^{\prime \prime }-\left (a^{2} {\mathrm e}^{2 x}+a \left (2 b +1\right ) {\mathrm e}^{x}+b^{2}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(906\)

12445

\[ {}y^{\prime \prime }-\left (a \,{\mathrm e}^{2 \lambda x}+b \,{\mathrm e}^{\lambda x}+c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(907\)

12446

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{4 \lambda x}+b \,{\mathrm e}^{3 \lambda x}+c \,{\mathrm e}^{2 \lambda x}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(908\)

12447

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(909\)

12451

\[ {}y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{3 \lambda x}+b \,{\mathrm e}^{2 \lambda x}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(910\)

12452

\[ {}y^{\prime \prime }-y^{\prime }+\left (a \,{\mathrm e}^{2 \lambda x} \left (b \,{\mathrm e}^{\lambda x}+c \right )^{n}+\frac {1}{4}-\frac {\lambda ^{2}}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(911\)

12454

\[ {}y^{\prime \prime }+\left (a +b \right ) {\mathrm e}^{\lambda x} y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\lambda x}+\lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(912\)

12455

\[ {}y^{\prime \prime }+a \,{\mathrm e}^{\lambda x} y^{\prime }-b \,{\mathrm e}^{\mu x} \left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}+\mu \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(913\)

12458

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{2 \lambda x}+\lambda \right ) y^{\prime }-a \lambda \,{\mathrm e}^{2 \lambda x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(914\)

12460

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+c \left (a \,{\mathrm e}^{\lambda x}+b -c \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(915\)

12462

\[ {}y^{\prime \prime }+\left (a +b \,{\mathrm e}^{\lambda x}+b -3 \lambda \right ) y^{\prime }+a^{2} \lambda \left (b -\lambda \right ) {\mathrm e}^{2 \lambda x} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(916\)

12465

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+2 b -\lambda \right ) y^{\prime }+\left (c \,{\mathrm e}^{2 \lambda x}+a b \,{\mathrm e}^{\lambda x}+b^{2}-b \lambda \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(917\)

12466

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{x}+b \right ) y^{\prime }+\left (c \left (a -c \right ) {\mathrm e}^{2 x}+\left (a k +b c -2 c k +c \right ) {\mathrm e}^{x}+k \left (b -k \right )\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(918\)

12467

\[ {}y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+\left (\alpha \,{\mathrm e}^{2 \lambda x}+\beta \,{\mathrm e}^{\lambda x}+\gamma \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(919\)

12471

\[ {}y^{\prime \prime }+{\mathrm e}^{\lambda x} \left (a \,{\mathrm e}^{2 \mu x}+b \right ) y^{\prime }+\mu \left ({\mathrm e}^{\lambda x} \left (b -a \,{\mathrm e}^{2 \mu x}\right )-\mu \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(920\)

12543

\[ {}\left (y^{2}+x^{2}\right ) \left (x +y^{\prime } y\right ) = \left (x^{2}+y^{2}+x \right ) \left (-y+x y^{\prime }\right ) \]

[_rational]

\(921\)

12647

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(922\)

12662

\[ {}x^{2} y^{\prime \prime }-2 n x \left (x +1\right ) y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(923\)

12663

\[ {}x^{4} y^{\prime \prime }+2 x^{3} \left (x +1\right ) y^{\prime }+n^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(924\)

12673

\[ {}\left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(925\)

12674

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime }-x y^{\prime }+y = -x^{2}+1 \]

[[_3rd_order, _with_linear_symmetries]]

\(926\)

12678

\[ {}\left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

\(927\)

12679

\[ {}2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 x y y^{\prime }+6 y^{2} = 0 \]

[[_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries]]

\(928\)

12682

\[ {}y^{\prime \prime \prime } x^{2}-5 x y^{\prime \prime }+\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(929\)

12684

\[ {}x^{2} y y^{\prime \prime }+\left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible, _mu_xy]]

\(930\)

12685

\[ {}x^{3} y^{\prime \prime }-\left (-y+x y^{\prime }\right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(931\)

12686

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )-y^{2} x^{2} \]

[[_2nd_order, _reducible, _mu_xy]]

\(932\)

12687

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(933\)

12691

\[ {}\left (x^{3}+1\right ) y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+18 x y^{\prime }+6 y = 0 \]

[[_3rd_order, _fully, _exact, _linear]]

\(934\)

12755

\[ {}x x^{\prime } = 1-x t \]

[_rational, [_Abel, ‘2nd type‘, ‘class A‘]]

\(935\)

13067

\[ {}y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

\(936\)

13341

\[ {}t^{3} x^{\prime \prime \prime }-\left (3+t \right ) t^{2} x^{\prime \prime }+2 t \left (3+t \right ) x^{\prime }-2 \left (3+t \right ) x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(937\)

13347

\[ {}\sin \left (t \right ) x^{\prime \prime }+\cos \left (t \right ) x^{\prime }+2 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(938\)

13350

\[ {}\left (t^{4}+t^{2}\right ) x^{\prime \prime }+2 t^{3} x^{\prime }+3 x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(939\)

13351

\[ {}x^{\prime \prime }-\tan \left (t \right ) x^{\prime }+x = 0 \]

[_Lienard]

\(940\)

13379

\[ {}\left [\begin {array}{c} x^{\prime }=x-x^{2} \\ y^{\prime }=2 y-y^{2} \end {array}\right ] \]

system_of_ODEs

\(941\)

13587

\[ {}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

\(942\)

13623

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=\frac {y^{2}}{x} \end {array}\right ] \]

system_of_ODEs

\(943\)

13635

\[ {}y^{\prime \prime \prime }+x y = \sin \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

\(944\)

13636

\[ {}y^{\prime \prime }+y^{\prime } y = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\(945\)

13639

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

\(946\)

13641

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

[[_3rd_order, _linear, _nonhomogeneous]]

\(947\)

13646

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(948\)

13661

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cot \left (x \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

\(949\)

13662

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

\(950\)

13665

\[ {}y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

\(951\)

13667

\[ {}x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(952\)

13668

\[ {}y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

\(953\)

13674

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(954\)

13692

\[ {}\left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 y \cos \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(955\)

13760

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = -t^{2}+2 t -10 \]
i.c. hint: laplace

[[_3rd_order, _with_linear_symmetries]]

\(956\)

13765

\[ {}y^{\prime \prime }+3 y^{\prime }+\frac {y}{t} = t \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(957\)

13767

\[ {}t^{3} y^{\prime \prime }-2 t y^{\prime }+y = t^{4} \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(958\)

13828

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

\(959\)

14160

\[ {}\sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

\(960\)

14236

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {2 y_{1}}{x}-\frac {y_{2}}{x^{2}}-3+\frac {1}{x}-\frac {1}{x^{2}} \\ y_{2}^{\prime }=2 y_{1}+1-6 x \end {array}\right ] \]
i.c.

system_of_ODEs

\(961\)

14237

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \end {array}\right ] \]
i.c.

system_of_ODEs

\(962\)

14257

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x} \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x} \end {array}\right ] \]

system_of_ODEs

\(963\)

14258

\[ {}\left [\begin {array}{c} y_{1}^{\prime }=\frac {5 y_{1}}{x}+\frac {4 y_{2}}{x}-2 x \\ y_{2}^{\prime }=-\frac {6 y_{1}}{x}-\frac {5 y_{2}}{x}+5 x \end {array}\right ] \]

system_of_ODEs

\(964\)

14938

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(965\)

14939

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(966\)

14940

\[ {}y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]

[[_2nd_order, _with_linear_symmetries]]

\(967\)

15435

\[ {}\left [\begin {array}{c} t x^{\prime }+2 x=15 y \\ t y^{\prime }=x \end {array}\right ] \]

system_of_ODEs

\(968\)

15458

\[ {}y^{\prime } y+y^{4} = \sin \left (x \right ) \]

[‘y=_G(x,y’)‘]

\(969\)

15794

\[ {}y^{4}+\left (t^{4}-t y^{3}\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

\(970\)

15924

\[ {}{y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \]

[[_2nd_order, _missing_x]]

\(971\)

15925

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

[[_2nd_order, _missing_x]]

\(972\)

16316

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

\(973\)

16327

\[ {}\left [\begin {array}{c} x^{\prime }=x^{2} \\ y^{\prime }={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

\(974\)

16350

\[ {}y^{\prime } = \sin \left (x y\right ) \]
i.c.

[‘y=_G(x,y’)‘]

\(975\)

16405

\[ {}x^{2} y^{\prime } \cos \left (y\right )+1 = 0 \]
i.c.

[_separable]

\(976\)

16406

\[ {}x^{2} y^{\prime }+\cos \left (2 y\right ) = 1 \]
i.c.

[_separable]

\(977\)

16412

\[ {}x^{2} y^{\prime }+\sin \left (2 y\right ) = 1 \]
i.c.

[_separable]

\(978\)

16460

\[ {}y^{\prime }-2 y \,{\mathrm e}^{x} = 2 \sqrt {y \,{\mathrm e}^{x}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(979\)

16466

\[ {}y^{\prime } = y \left ({\mathrm e}^{x}+\ln \left (y\right )\right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

\(980\)

16468

\[ {}y^{\prime } y+1 = \left (x -1\right ) {\mathrm e}^{-\frac {y^{2}}{2}} \]

[‘y=_G(x,y’)‘]

\(981\)

16469

\[ {}y^{\prime }+\sin \left (2 y\right ) x = 2 x \,{\mathrm e}^{-x^{2}} \cos \left (y\right )^{2} \]

[‘y=_G(x,y’)‘]

\(982\)

16627

\[ {}y^{\prime \prime \prime } = 3 y^{\prime } y \]
i.c.

[[_3rd_order, _missing_x], [_3rd_order, _exact, _nonlinear], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

\(983\)

16788

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

\(984\)

16790

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

\(985\)

16841

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (x -1\right )^{2} {\mathrm e}^{x} \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

\(986\)

16845

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = 2 x -2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

\(987\)

16881

\[ {}y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]
i.c. hint: series

[NONE]

\(988\)

16905

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-2 t x_{1}^{2} \\ x_{2}^{\prime }=\frac {x_{2}+t}{t} \end {array}\right ] \]

system_of_ODEs

\(989\)

16906

\[ {}\left [\begin {array}{c} x_{1}^{\prime }={\mathrm e}^{t -x_{1}} \\ x_{2}^{\prime }=2 \,{\mathrm e}^{x_{1}} \end {array}\right ] \]

system_of_ODEs

\(990\)

16907

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=\frac {y^{2}}{x} \end {array}\right ] \]

system_of_ODEs

\(991\)

16908

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=\frac {x_{1}^{2}}{x_{2}} \\ x_{2}^{\prime }=x_{2}-x_{1} \end {array}\right ] \]

system_of_ODEs

\(992\)

16909

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {{\mathrm e}^{-x}}{t} \\ y^{\prime }=\frac {x \,{\mathrm e}^{-y}}{t} \end {array}\right ] \]

system_of_ODEs

\(993\)

16910

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {t +y}{x+y} \\ y^{\prime }=\frac {x-t}{x+y} \end {array}\right ] \]

system_of_ODEs

\(994\)

16911

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {t -y}{y-x} \\ y^{\prime }=\frac {x-t}{y-x} \end {array}\right ] \]

system_of_ODEs

\(995\)

16912

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {t +y}{x+y} \\ y^{\prime }=\frac {t +x}{x+y} \end {array}\right ] \]

system_of_ODEs

\(996\)

16920

\[ {}\left [\begin {array}{c} x^{\prime \prime }=y \\ y^{\prime \prime }=x \end {array}\right ] \]

system_of_ODEs

\(997\)

16921

\[ {}\left [\begin {array}{c} x^{\prime \prime }+y^{\prime }+x=0 \\ x^{\prime }+y^{\prime \prime }=0 \end {array}\right ] \]

system_of_ODEs

\(998\)

16922

\[ {}\left [\begin {array}{c} x^{\prime \prime }=3 x+y \\ y^{\prime }=-2 x \end {array}\right ] \]

system_of_ODEs

\(999\)

16923

\[ {}\left [\begin {array}{c} x^{\prime \prime }=x^{2}+y \\ y^{\prime }=-2 x x^{\prime }+x \end {array}\right ] \]
i.c.

system_of_ODEs

\(1000\)

16924

\[ {}\left [\begin {array}{c} x^{\prime }=x^{2}+y^{2} \\ y^{\prime }=2 x y \end {array}\right ] \]

system_of_ODEs

\(1001\)

16925

\[ {}\left [\begin {array}{c} x^{\prime }=-\frac {1}{y} \\ y^{\prime }=\frac {1}{x} \end {array}\right ] \]

system_of_ODEs

\(1002\)

16926

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {x}{y} \\ y^{\prime }=\frac {y}{x} \end {array}\right ] \]

system_of_ODEs

\(1003\)

16927

\[ {}\left [\begin {array}{c} x^{\prime }=\frac {y}{x-y} \\ y^{\prime }=\frac {x}{x-y} \end {array}\right ] \]

system_of_ODEs

\(1004\)

16928

\[ {}\left [\begin {array}{c} x^{\prime }=\sin \left (x\right ) \cos \left (y\right ) \\ y^{\prime }=\cos \left (x\right ) \sin \left (y\right ) \end {array}\right ] \]

system_of_ODEs

\(1005\)

16929

\[ {}\left [\begin {array}{c} {\mathrm e}^{t} x^{\prime }=\frac {1}{y} \\ {\mathrm e}^{t} y^{\prime }=\frac {1}{x} \end {array}\right ] \]

system_of_ODEs

\(1006\)

16942

\[ {}\left [\begin {array}{c} x^{\prime }=-4 x-2 y+\frac {2}{{\mathrm e}^{t}-1} \\ y^{\prime }=6 x+3 y-\frac {3}{{\mathrm e}^{t}-1} \end {array}\right ] \]

system_of_ODEs

\(1007\)

17134

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x t +y \\ y^{\prime }=3 x-y \end {array}\right ] \]

system_of_ODEs

\(1008\)

17137

\[ {}\left [\begin {array}{c} x^{\prime }=-x+t y \\ y^{\prime }=x t -y \end {array}\right ] \]

system_of_ODEs

\(1009\)

17138

\[ {}\left [\begin {array}{c} x^{\prime }=x+y+4 \\ y^{\prime }=-2 x+\sin \left (t \right ) y \end {array}\right ] \]

system_of_ODEs

\(1010\)

17208

\[ {}\left [\begin {array}{c} x^{\prime }=-x+y+x^{2} \\ y^{\prime }=y-2 x y \end {array}\right ] \]

system_of_ODEs

\(1011\)

17209

\[ {}\left [\begin {array}{c} x^{\prime }=2 y \,x^{2}-3 x^{2}-4 y \\ y^{\prime }=-2 x \,y^{2}+6 x y \end {array}\right ] \]

system_of_ODEs

\(1012\)

17210

\[ {}\left [\begin {array}{c} x^{\prime }=3 x-x^{2} \\ y^{\prime }=2 x y-3 y+2 \end {array}\right ] \]

system_of_ODEs

\(1013\)

17211

\[ {}\left [\begin {array}{c} x^{\prime }=x-x y \\ y^{\prime }=y+2 x y \end {array}\right ] \]

system_of_ODEs

\(1014\)

17217

\[ {}\left [\begin {array}{c} x^{\prime }=-x+2 x y \\ y^{\prime }=y-x^{2}-y^{2} \end {array}\right ] \]

system_of_ODEs

\(1015\)

17223

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\alpha \left (1+\alpha \right ) y = 0 \]

[_Gegenbauer]

\(1016\)

17234

\[ {}\left (t -1\right ) y^{\prime \prime }-3 t y^{\prime }+4 y = \sin \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

\(1017\)

17235

\[ {}t \left (-4+t \right ) y^{\prime \prime }+3 t y^{\prime }+4 y = 2 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

\(1018\)

17465

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = g \left (t \right ) \]
i.c. hint: laplace

[[_high_order, _linear, _nonhomogeneous]]

\(1019\)

17565

\[ {}\left [\begin {array}{c} x^{\prime }=-2 y+x y \\ y^{\prime }=x+4 x y \end {array}\right ] \]

system_of_ODEs

\(1020\)

17566

\[ {}\left [\begin {array}{c} x^{\prime }=1+5 y \\ y^{\prime }=1-6 x^{2} \end {array}\right ] \]

system_of_ODEs

\(1021\)

17596

\[ {}y^{\prime } \left (x^{2}+y^{2}+3\right ) = 2 x \left (2 y-\frac {x^{2}}{y}\right ) \]

[_rational]

\(1022\)

17611

\[ {}2 x^{3}+3 x^{2} y+y^{2}-y^{3}+\left (2 y^{3}+3 x y^{2}+x^{2}-x^{3}\right ) y^{\prime } = 0 \]

[_rational]

\(1023\)

17655

\[ {}n \,x^{3} y^{\prime \prime } = \left (y-x y^{\prime }\right )^{2} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(1024\)

17656

\[ {}y^{2} \left (x^{2} y^{\prime \prime }-x y^{\prime }+y\right ) = x^{3} \]

[[_2nd_order, _with_linear_symmetries]]

\(1025\)

17657

\[ {}x^{2} y^{2} y^{\prime \prime }-3 x y^{2} y^{\prime }+4 y^{3}+x^{6} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(1026\)

17663

\[ {}x^{2} y y^{\prime \prime }+x^{2} {y^{\prime }}^{2}-5 x y y^{\prime } = 4 y^{2} \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(1027\)

17666

\[ {}40 {y^{\prime \prime \prime }}^{3}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+9 {y^{\prime \prime }}^{2} y^{\left (5\right )} = 0 \]

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries]]

\(1028\)

17671

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

\(1029\)

17673

\[ {}\sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

[[_2nd_order, _with_linear_symmetries]]

\(1030\)

17675

\[ {}x y^{\prime \prime \prime }-y^{\prime \prime }+x y^{\prime }-y = 0 \]

[[_3rd_order, _with_linear_symmetries]]

\(1031\)

17679

\[ {}\left (x^{2}+2\right ) y^{\prime \prime \prime }-2 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }-2 x y = x^{4}+12 \]

[[_3rd_order, _linear, _nonhomogeneous]]

\(1032\)

17682

\[ {}y^{\prime \prime }+\frac {y}{x^{2} \ln \left (x \right )} = {\mathrm e}^{x} \left (\frac {2}{x}+\ln \left (x \right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

\(1033\)

17716

\[ {}\left [\begin {array}{c} y^{\prime }=\frac {y^{2}}{z} \\ z^{\prime }=\frac {y}{2} \end {array}\right ] \]

system_of_ODEs

\(1034\)

17717

\[ {}\left [\begin {array}{c} y^{\prime }=1-\frac {1}{z} \\ z^{\prime }=\frac {1}{y-x} \end {array}\right ] \]

system_of_ODEs

\(1035\)

17721

\[ {}\left [\begin {array}{c} y^{\prime }=\frac {z^{2}}{y} \\ z^{\prime }=\frac {y^{2}}{z} \end {array}\right ] \]

system_of_ODEs

\(1036\)

17722

\[ {}\left [\begin {array}{c} y^{\prime }=\frac {y^{2}}{z} \\ z^{\prime }=\frac {z^{2}}{y} \end {array}\right ] \]

system_of_ODEs

\(1037\)

17726

\[ {}\left [\begin {array}{c} y^{\prime \prime }+z^{\prime }-2 z={\mathrm e}^{2 x} \\ z^{\prime }+2 y^{\prime }-3 y=0 \end {array}\right ] \]

system_of_ODEs

\(1038\)

17728

\[ {}\left [\begin {array}{c} y^{\prime }+\frac {2 z}{x^{2}}=1 \\ z^{\prime }+y=x \end {array}\right ] \]

system_of_ODEs

\(1039\)

17729

\[ {}\left [\begin {array}{c} t x^{\prime }-x-3 y=t \\ t y^{\prime }-x+y=0 \end {array}\right ] \]

system_of_ODEs

\(1040\)

17730

\[ {}\left [\begin {array}{c} t x^{\prime }+6 x-y-3 z=0 \\ t y^{\prime }+23 x-6 y-9 z=0 \\ t z^{\prime }+x+y-2 z=0 \end {array}\right ] \]

system_of_ODEs

\(1041\)

17963

\[ {}y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

\(1042\)

17998

\[ {}y^{\prime \prime }+3 x y^{\prime }+x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(1043\)

18135

\[ {}x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y = 3 \,{\mathrm e}^{-x} \]
i.c. hint: laplace

[[_2nd_order, _linear, _nonhomogeneous]]

\(1044\)

18136

\[ {}y^{\prime \prime }+x^{2} y = 0 \]
i.c. hint: laplace

[[_Emden, _Fowler]]

\(1045\)

18207

\[ {}x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 x y^{\prime }+4 y = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_xy]]

\(1046\)

18210

\[ {}\cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y^{\prime \prime }+n y \sin \left (x \right ) = 0 \]

[[_2nd_order, _with_linear_symmetries]]

\(1047\)

18288

\[ {}y^{\prime \prime \prime } y^{\prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5} = 0 \]

[[_3rd_order, _missing_y], [_3rd_order, _with_exponential_symmetries], [_3rd_order, _with_linear_symmetries]]

\(1048\)

18298

\[ {}\left (x^{2}+1\right ) y^{\prime }+x^{2} y = x^{3}-x^{2} \arctan \left (x \right ) \]

[_linear]

\(1049\)

18372

\[ {}\left (x^{3}+x^{2}-3 x +1\right ) y^{\prime \prime \prime }+\left (9 x^{2}+6 x -9\right ) y^{\prime \prime }+\left (18 x +6\right ) y^{\prime }+6 y = x^{3} \]

[[_3rd_order, _fully, _exact, _linear]]

\(1050\)

18444

\[ {}-y+x y^{\prime } = x \sqrt {y^{2}+x^{2}} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]